Belowground ecology: roots, microbes, and soils
Main content start
Main content start
Results for: Belowground ecology: roots, microbes, and soils
- “Greater Humification of Belowground Than Aboveground Biomass Carbon into Particulate Soil Organic Matter in No-till Corn and Soybean Crops”, Soil Biology Biochemistry, 85 (2015). https://doi.org/doi:10.1016/j.soilbio.2015.02.014.
- “Redefining Fine Roots Improves Understanding of below-Ground Contributions to Terrestrial Biosphere Processes”, New Phytologist, 207 (2015). https://doi.org/doi:10.1111/nph.13363.
- “Soil Carbon Responses to past and Future CO2 in Three Texas Prairie Soils”, Soil Biology Biochemistry, 83 (2015). https://doi.org/doi:10.1016/j.soilbio.2015.01.012.
- “Contrasting Hydraulic Architecture and Function in Deep and Shallow Roots of Tree Species from a Semi-Arid Habitat”, Annals of Botany, 113 (2014). https://doi.org/doi:10.1093/aob/mct294.
- “Fungal Community Responses to past and Future Atmospheric CO2 Differ by Soil Type”, Applied and Environmental Microbiology, 80 (2014). https://doi.org/doi:10.1128/AEM.02083-14.
- “Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities Than Elevated Atmospheric CO2”, Applied and Environmental Microbiology, 80 (2014). https://doi.org/doi:10.1128/AEM.04034-13.
- “Priming of Soil Organic Carbon Decomposition Induced by Corn Compared to Soybean Crops”, Soil Biology Biochemistry, 75 (2014). https://doi.org/doi:10.1016/j.soilbio.2014.04.005.
- “Hydraulic Limits on Maximum Plant Transpiration and the Emergence of the Safety-Efficiency Trade-off”, New Phytologist, 198 (2013). https://doi.org/doi:10.1111/nph.12126.
- “The Structure, Distribution, and Biomass of the world’s Forests”, Annual Review of Ecology, Evolution, and Systematics, 44 (2013). https://doi.org/doi:10.1146/annurev-ecolsys-110512-135914.
- “A Global Analysis of Groundwater Recharge for Vegetation, Climate, and Soils”, Vadose Zone Journal, 11 (2012). https://doi.org/doi:10.2136/vzj2011.0021RA.
- “Analytical Models of Soil and Litter Decomposition: Solutions for Mass Loss and Time-Dependent Decay Rates”, Soil Biology and Biochemistry, 50 (2012). https://doi.org/doi:10.1016/j.soilbio.2012.02.029.
- “Common Bacterial Responses in Six Ecosystems Exposed to 10 Years of Elevated Atmospheric Carbon Dioxide”, Environmental Microbiology, 14 (2012). https://doi.org/doi:10.1111/j.1462-2920.2011.02695.x.
- “Revised Calibration of the MBT-CBT Paleotemperature Proxy Based on Branched Tetraether Membrane Lipids in Surface Soils”, Geochimica et Cosmochimica Acta, 96 (2012). https://doi.org/doi:10.1016/j.gca.2012.08.011.
- “Shifts in Soil Organic Carbon for Plantation and Pasture Establishment in Native Forests and Grasslands of South America”, Global Change Biology, 18 (2012). https://doi.org/doi:10.1111/j.1365-2486.2012.02761.x.
- “The Effect of Hydraulic Lift on Organic Matter Decomposition, Soil Nitrogen Cycling, and Nitrogen Acquisition by a Grass Species”, Oecologia, 168 (2012). https://doi.org/doi:10.1007/s00442-011-2065-2.
- “Atmospheric CO2 and Soil Extracellular Enzyme Activity: A Meta-Analysis and CO2 Gradient Experiment”, Ecosphere, 2 (2011). https://doi.org/doi:10.1890/ES11-00117.1.
- “Increases in the Flux of Carbon Belowground Stimulate Nitrogen Uptake and Sustain the Long-Term Enhancement of Forest Productivity under Elevated CO2”, Ecology Letters, 14 (2011). https://doi.org/doi:10.1111/j.1461-0248.2011.01593.x.
- “Responses of Soil Cellulolytic Fungal Communities to Elevated Atmospheric CO2 Are Complex and Variable across Five Ecosystems”, Environmental Microbiology, 13 (2011). https://doi.org/doi:10.1111/j.1462-2920.2011.02548.x.
- “Sources of Increased N Uptake in Forest Trees Growing under Elevated CO2: Results of a Large-Scale 15N Study”, Global Change Biology, 17 (2011). https://doi.org/doi:10.1111/j.1365-2486.2011.02465.x.
- “Hydraulic Lift and Tolerance to Salinity of Semiarid Species: Consequences for Species Interactions”, Oecologia, 162 (2010). https://doi.org/doi:10.1007/s00442-009-1447-1.