Research frontiers in the analysis of coupled biogeochemical cycles

Adrien C Finzi1*, Jonathan J Cole2, Scott C Doney3, Elisabeth A Holland4, and Robert B Jackson5

The analysis of coupled biogeochemical cycles (CBCs) addresses the scientific basis for some of today's major environmental problems. Drawing from information presented at a series of sessions on CBCs held at the 2009 Annual Meeting of the Ecological Society of America and from the research community's expertise, we identify several principal research themes that justify action and investment. Critical areas for research include: coupling of major element cycles to less studied yet equally important trace element cycles; analyzing CBCs across ecosystem boundaries; integrating experimental results into regional- and global-scale models; and expanding the analysis of human interactions with CBCs arising from human population growth, urbanization, and geo-engineering. To advance the current understanding of CBCs and to address the environmental challenges of the 21st century, scientists must maintain and synthesize data from existing observational and experimental networks, develop new instrumentation networks, and adopt emerging technologies.

In a nutshell:
- There is a clear role for the analysis of coupled biogeochemical cycles (CBCs) in addressing the scientific basis for major environmental problems, by both identifying causal relationships and suggesting possible solutions.
- Frontiers for research in CBCs include coupling of major element cycles to less studied yet equally important trace element cycles, analyzing CBCs across ecosystem boundaries, and integrating information from experiments into regional- and global-scale models.
- Human population growth, as well as geoengineering efforts aimed at mitigating climate change, are likely to accentuate present-day, anthropogenic changes to CBCs.
- Researchers will need to rely on available data from existing studies and experiments, develop new or expand existing instrumentation networks, incorporate emerging technologies in the analysis of CBCs, and work together with stakeholders and government agencies to address the environmental challenges posed by human alteration of CBCs, such as climate change and the sustainable management of lands and coastal oceans.

Crosscutting themes in the analysis of CBCs

Interactions among the C, N, and P cycles are among the best studied in the world, and for good reason. These three elements are intricately linked by the biochemistry of life and by the evolutionary and ecological consequences of different strategies for their acquisition, storage, and recycling (Sterner and Elser 2002). These element cycles' interactions will largely determine the effect of anthropogenic CO2 emissions on Earth's climate.
through their respective influences on carbon (C) removal from the atmosphere and storage on land and in the sea (Falkowski et al. 2000).

There are, however, many compelling examples of the ways in which the C, N, and P cycles are linked to other element cycles that are not so well understood (Burgin et al. 2011). For instance, nitrogenase – an enzyme that is central to the process of biological N\textsubscript{2} fixation and hence the accrual of nitrogen in ecosystems – contains an iron (Fe)–molybdenum (Mo) cofactor. The availability of Fe and Mo limits the rate of biological N\textsubscript{2} fixation in terrestrial and aquatic ecosystems (Coale et al. 1996; Mills et al. 2004; Barron et al. 2009). Because N limitation is widespread in the biosphere, the Fe and Mo cycles indirectly control the C cycle in many places, through their effect on fixation and the availability of N that fuels primary production (Wang and Houlton 2009; Figure 1).

Although much is known about N\textsubscript{2} fixation from fertilization experiments with Fe, Mo, and other trace metals (Boyd et al. 2007; Barron et al. 2009), outstanding questions remain. In oceanic systems, as an example, key areas for additional research include: the bioavailability of Fe in aerosol particles and dust; the effect of Fe and P limitation on N\textsubscript{2} fixation rates; the community structure of diazotrophic organisms (Boyd and Ellwood 2010; Monteiro et al. 2010); and the effect of sulfate (SO\textsubscript{4}2−) inhibition on Mo uptake, which may explain why N\textsubscript{2} fixation proceeds more readily in fresh waters than in the ocean (Vitousek and Howarth 1991; Marino et al. 2003). Likewise, in terrestrial ecosystems, key areas for additional research include the link between the biogeography of symbiotic N\textsubscript{2} plants and their effect on CBCs (Crews 1999), analysis of the spatial and temporal scales over which P and trace metal supplies constrain N\textsubscript{2} fixation (Barron et al. 2009), and the effects of global change on symbiotic and asymbiotic N\textsubscript{2} fixation (Wang and Houlton 2009).

Biogeochemical cycles are dynamic – with large exchanges of C and nutrients among terrestrial ecosystems, aquatic ecosystems, and Earth’s atmosphere – and serve to connect ecosystems to one another. In general, however, the analysis of biogeochemical cycles has been disciplinary, often ignoring important cross-ecosystem linkages that affect ecosystem functioning. Streams, for instance, transport a substantial quantity of the C fixed through photosynthesis on land to the ocean and atmosphere (Cole et al. 1994), as well as N and P to the coastal ocean, which often contribute to eutrophication (Diaz and Rosenberg 2008). Winds also transfer considerable quantities of terrestrially derived nutrients (eg P, Fe, Mo) – often critical for primary production – in dust to downwind ecosystems (Chadwick et al. 1999; Jickells et al. 2005). Furthermore, wildfires rapidly change the quantity of C, N, and P in biomass and soils, and the atmospheric transport of ash also delivers nutrients to downwind ecosystems (Raison et al. 1985). Yet analyzing CBCs across ecosystem boundaries provides the necessary context for understanding the emergence of particular patterns or processes in both the source and receiving ecosystem (Figure 1).

Our understanding of CBCs, albeit incomplete, can be used as a powerful constraint on model analysis. Plot- to regional-scale terrestrial models and a number of oceanic models explicitly include the coupled cycles of C, N, and/or P, and these couplings affect the projected magnitude of climate change with rising atmospheric CO\textsubscript{2} concentrations (Parton et al. 1987; Rastetter 2011). In terrestrial ecosystems, several models developed in the early 1990s predicted that nutrient limitation would preclude a long-term response of terrestrial productivity to rising atmospheric CO\textsubscript{2} (eg Comins and McMurtrie 1993), an observation borne out by several (eg Reich et al. 2006), though not all (eg McCarthy et al. 2010), long-term CO\textsubscript{2} enrichment experiments. In contrast, biogeochemical constraints are not used as effectively in larger-scale...
models. Biogeochemical feedbacks to C storage in the terrestrial biosphere are only now being incorporated into global-scale climate–C-cycle models, many of which are used in Intergovernmental Panel on Climate Change reports to predict the future state of the C cycle and hence Earth’s future climate (Thornton et al. 2007; Bonan and Levis 2010; Zaehle et al. 2010), even though the importance of CBC constraints at the global scale has long been known (Melillo et al. 1993). Failure to include CBCs in models, even in their simplest form (eg the stoichiometry of C, N, and P in organisms), appears to overestimate the 21st-century terrestrial C sink (Hungate et al. 2003) and thus underestimate the degree of projected warming during this period. A recent analysis by Wang and Houlton (2009) suggested that the degree of warming by 2100 depends on the interactive effects of climate, P supply, and biological N₂ fixation on primary production.

Humans and CBCs

The growth of the human population to date has yielded cities of unprecedented size and form (Schneider and Woodcock 2008), which have modified biogeochemical cycles (Kaye et al. 2006) and altered climate (Zhang et al. 2004). In 2008, about half of the world’s population lived in urban areas; by 2050, about 70% of the human population is projected to live in urban environments (UNFPA 2007). Yet we are only beginning to understand how large population centers affect CBCs over local and regional scales. How does the importation of food, energy, and building materials affect the stoichiometry and cycling of C, N, P, and water in urban and suburban regions, and how might the types of landscapes and seascapes surrounding these regions modulate the downwind and downstream effects of these changes? To what extent could urban planning help mitigate some of these effects (Pataki et al. 2011)? Integrated assessment models are starting to address these questions (Wise et al. 2009) and will contribute to a better understanding of the impacts of urbanization on CBCs, particularly in parts of the world – such as developing nations – where urbanization is expected to increase the most.

An emerging human interest, geoengineering, has substantial implications for CBCs (Figure 3). Defined as deliberately modifying Earth’s environment to mitigate the effect of increasing GHG concentrations on the climate system, geoengineering options are increasingly being proposed as a bridge to a carbon-neutral future (eg Jackson and Salzman 2010; Keith et al. 2010). One set of geoengineering activities seeks to cool the Earth by removing CO₂ and other GHGs from the atmosphere by planting trees, fertilizing the ocean with Fe, or capturing and storing CO₂ at power plants. A second set of geoengineering activities proposes to cool the planet by blocking or reflecting sunlight; such “sunshade” approaches include injecting dust into the stratosphere or increasing the cover or brightness of clouds to compensate for GHG-associated warming (Crutzen 2006).

Most geoengineering approaches will alter CBCs, even those intended to manipulate the physical rather than the biological environment. For instance, sunshades that block or reflect sunlight are almost certain to reduce precipitation globally. The eruption of Mount Pinatubo in the Philippines in 1991 provided an interesting analog; large emissions of aerosols – particles that reflect incoming sunlight back to space – to the atmosphere both cooled the Earth by ~0.5°C for a year and produced a record decrease in runoff and river discharge into the oceans (Trenberth and Dai 2007). Global trends are not, however, the best gauge of sunshade efficacy or impact. One recent analysis suggested that sunshades cannot simultaneously stabilize temperature and precipitation in the face of continued GHG emissions (Ricke et al. 2010), and that the climate-trajectory response to solar-radiation management is likely to differ substantially from region to region. Because biogeochemical cycles are strongly influenced by
temperature and precipitation, sunshades may alter CBCs in a manner that raises serious legal, ethical, and political concerns over their use. Food security may be particularly problematic, given the direct negative impact of reduced precipitation on crop productivity and decomposition, which releases essential supplies of N, P, and micronutrients to crops (St Clair and Lynch 2010).

Another geoengineering-related uncertainty is the extent to which these activities will alter emissions of trace gases as a result of changing CBCs. The oceans are currently a large natural sink for anthropogenic atmospheric CO₂ resulting from the burial of C fixed by phytoplankton at great depths in the ocean. Geoengineering in the oceans seeks to amplify biological C export from the surface ocean by adding Fe to high nitrate, low chlorophyll equatorial and subpolar ecosystems (Boyd et al. 2007; Buesseler et al. 2008). More recent proposals involve adding Fe or P (the latter via enhanced upwelling) to subtropical low nitrate, low chlorophyll ecosystems to increase rates of N₂ fixation by cyanobacteria (Karl and Letelier 2008). The tradeoff, however, may be enhancements in the release of nitrous oxide (N₂O) – a GHG 310 times as powerful as CO₂ – as a consequence of the increase in N₂ fixation. Large-scale but short-term Fe fertilization experiments have found negligible to small increases in N₂O production in the oceans. In contrast, model simulations of the long-term effects of Fe fertilization suggest that net emissions of N₂O may increase substantially, reducing the climate benefits of any additional C sequestered in the ocean (Law 2008). Similarly, Fe fertilization experiments have revealed strong regional differences in dimethylsulfide (DMS) emissions from the ocean (Turner et al. 2004; Levasseur et al. 2006). DMS emissions may cool the planet through oxidation to sulfate aerosol particles that have sunshade-like effects and increase cloud cover by serving as cloud condensation nuclei.

The various geoengineering options that might be available to policy makers (eg Buesseler et al. 2008) need to be thoroughly analyzed in the framework of CBCs before implementation. Uncertainties in sunshade effects are mirrored in geoengineering activities seeking to remove CO₂ from the atmosphere. Tree planting and bioenergy generation coupled to C capture and storage will require ecological footprints of millions of hectares of land to provide a meaningful solution (Jackson et al. 2008). Where will the N, P, and other elements needed for these options come from, and how will this affect CBCs in target and non-target ecosystems? Integrative research and novel synthesis of existing studies on CBCs will be vital in identifying the most constructive geoengineering approaches to climate change.
Research needs

The maintenance and synthesis of data from existing observational and experimental networks (OENs), the development of new OENs, and the use of emerging technologies will be fundamental to advancing our understanding of CBCs and addressing key 21st-century challenges, including climate change, the growing human population, and the sustainable management of the land surface and coastal ocean (Melack et al. 2011). OENs are more than databases, technology, and hardware, however, and future advances in CBC analysis hinge on new modes of organizing and promoting observational and experimental science to address increasingly complex questions. This necessitates an improved culture of data sharing, which can only be achieved when researchers are given appropriate credit and incentives for their achievements through more recognized procedures for citing data packages and valuing coauthorship on papers involving large data compilations and numerous contributors.

Characterizing fine spatial and temporal resolution changes in the pools of elements such as N, P, Fe, and sulfur (S), among others, remains a major challenge for biogeochemical research, particularly on land and in the open ocean but probably less so for the water and C cycles. The widespread deployment of high-temporal-resolution CO₂ and water (eg vapor, soil moisture) analyzers has yielded large volumes of data that have been essential in constraining global-scale, coupled climate–C-cycle models (IPCC 2007). By contrast, analysis of N, P, Fe, and S is not typically automated; these elements require manual sampling and laboratory analysis. This results in generally less data on important element cycles and thus less information to constrain models. It is therefore critical to develop networks that measure in situ concentrations and isotopic compositions of elements and molecules in addition to C and water. To this end, there are encouraging developments. For example, several floats in the global Argo profiling float system, a network of >3200 free-floating temperature and salinity sensors, will begin measuring O₂, S²⁻, and NO₃⁻ concentrations in seawater (Johnson et al. 2009). This added biogeochemical capacity will address unresolved issues in the size and distribution of oxygen minimum zones in the ocean, the nutrient content of sub-Antarctic mode water (water that is formed on the northern flank of the Antarctic Circumpolar Current and that fuels primary production in the oceans north of 30°S), and the role of CBCs in the draw-down of surface water CO₂ at the sub-tropical–subpolar boundary in the Pacific Ocean (Johnson et al. 2009).

Collaboration between biogeochemists and engineers – to develop next-generation measurement and modeling technologies and to resolve issues associated with new applications of existing technology – is also necessary. For example, analysis of CBCs in soils and sediments requires the destructive removal of samples by coring, thereby precluding repeated measurements and, through time, potentially compromising the integrity of the field site. Laser-induced breakdown spectroscopy (LIBS) is an emerging technology that may help to resolve this problem (Harmon et al. 2005). In LIBS, a pulsed laser operating over time scales measured in nanoseconds is inserted into the ground and heats a mineral or organic matter surface by >10,000 K to yield a sub-microgram plasma. During plasma formation, electrons recombine with ions and release energy in the 280–980 nm range, with emission spectra reflecting the types of elements and molecules present in the sample (Harmon et al. 2005). In laboratory applications, LIBS can have a field of view as small as 0.05 μm², allowing for the analysis of organic compounds within microbial cells (Morel et al. 2003; Rehse et al. 2010). In the field, LIBS has been used primarily for geochemical exploration, but the analysis of mineral composition at very fine spatial and temporal scales is clearly relevant to CBCs, particularly with respect to rock-derived nutrients.

The maintenance and synthesis of OENs requires secure sources of uninterrupted funding. But maintaining studies over many years to decades is complicated by the current funding structure, which often favors projects investigating new hypotheses at the expense of maintaining long-term studies, which often document unexpected events and provide important insights into the process underlying these events. In the recent past, long-term studies have relied to a greater extent on a creative patchwork of funding approaches (Keeling 1998). One solution – similar to what has been accomplished with most weather and stream chemistry data – is to transition the mode of some long-term observations from specific principal-investigator-driven research projects to routine monitoring conducted by more operational science agencies. Yet this strategy raises issues with respect to data quality, continuity, and ongoing engagement with the scientific community.

Conclusions

Whatever the scientific backdrop – geoengineering, land-use change, fertilizer management, climate change – human activity is clearly altering CBCs, with important environmental consequences. The prospects for addressing these inherently complex issues from a scientific perspective certainly seem to be improving; data synthesis and data-model activities are expanding in both number and scope (eg Mayorga et al. 2010), new OENs are being established (eg Keller et al. 2008), and the biogeochemistry research community is increasingly using innovative ways to address long-standing questions about CBCs (eg Whiteside et al. 2009). As societies grow and progress, it will be necessary not only to tackle these questions, but also to remain flexible, so that the underlying principles in biogeochemistry can be applied to emerging environmental problems (eg those involving nanomaterials or geoengineering schemes) and that courses of action may...
be suggested to remediate negative effects before they reach a state of crisis.

Acknowledgements

We thank the National Science Foundation (NSF) and the Ecological Society of America (ESA) for their financial and logistical support of the Coupled Biogeochemical Cycles sessions held at the 2009 ESA Annual Meeting, and the publication of this special feature issue of *Frontiers*. The ideas presented in this paper are also the result of funding agency support for each author’s research programs. ACF was supported by the NSF (DEB-0743564) and the US Department of Energy’s (DOE’s) Office of Biological and Environmental Research (10-DOE-1053) and would like to thank L Hutnya and N Phillips for discussions on urbanization and CBCs. SCD was supported by the Center for Microbial Oceanography, Research and Education (NSF EF-0424599). RBJ was supported by the NSF (DEB-0717191) and by the DOE’s National Institute for Climate Change Research.

References

Clip or copy the form below. Thank you for your support.

Library Recommendation Form

To: Acquisition Librarian, Serials

From: __

Dept. __

Signature: __ Date: __________

I recommend the library subscribe to: Frontiers in Ecology and the Environment (ISSN 1540-9295)

To request a free sample issue of Frontiers in Ecology and the Environment, email Eric Gordon at eric@esa.org.

Order Frontiers by contacting ESA Headquarters at (202) 833-8773, online at www.esa.org, or through your subscription agent.