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Abstract. Conversions of natural woodlands to agriculture can alter the hydrologic
balance, aquifer recharge, and salinity of soils and groundwater in ways that influence
productivity and sustainable land use. Using a land-use change chronosequence in semiarid
woodlands of Argentina’s Espinal province, we examined the distribution of moisture and
solutes and estimated recharge rates on adjacent plots of native woodlands and rain-fed
agriculture converted 6–90 years previously. Soil coring and geoelectrical profiling confirmed
the presence of spatially extensive salt accumulations in dry woodlands and pervasive salt
losses in areas converted to agriculture. A 1.1-km-long electrical resistivity transect traversing
woodland, 70-year-old agriculture, and woodland, for instance, revealed a low-resistivity
(high-salinity) horizon between ;3 m and 13 m depth in the woodlands that was virtually
absent in the agricultural site because of leaching. Nine-meter-deep soil profiles indicated a
53% increase in soil water storage after 30 or more years of cultivation. Conservative
groundwater-recharge estimates based on chloride tracer methods in agricultural plots ranged
from ;12 to 45 mm/yr, a substantial increase from the ,1 mm/yr recharge in dry woodlands.
The onset of deep soil moisture drainage and increased recharge led to .95% loss of sulfate
and chloride ions from the shallow vadose zone in most agriculture plots. These losses
correspond to over 100 Mg of sulfate and chloride salts potentially released to the region’s
groundwater aquifers through time with each hectare of deforestation, including a capacity to
increase groundwater salinity to .4000 mg/L from these ions alone. Similarities between our
findings and those of the dryland salinity problems of deforested woodlands in Australia
suggest an important warning about the potential ecohydrological risks brought by the current
wave of deforestation in the Espinal and other regions of South America and the world.
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INTRODUCTION

Population growth, demand for food, and the drive

for green energy are accelerating the conversion of

natural lands to agriculture. Globally, croplands have

increased in area six-fold in the last three centuries and

are expected to expand another 18% by 2050 (e.g.,

Goldewijk 2001, Tilman et al. 2001). Since the most

productive lands of the planet are generally under

cultivation already (Ramankutty et al. 2002), future

agricultural expansions will increasingly occur in more

environmentally sensitive and economically risky mar-

ginal lands. The rapid and expansive land-use changes

that are occurring in semiarid regions of Latin America

are a prime example of this process (Grau et al. 2005,

Gasparri and Grau 2009). Similar patterns of change are

occurring on other continents as well.

A greater concern beyond agricultural productivity

and profitability of these newly established croplands is

their potential impacts on the surrounding environments

(Jackson et al. 2009). Changing the existing groundwater

recharge–discharge relationships, for example, may

affect the quality and quantity of surface and ground-

water resources (e.g., Jackson et al. 2005, Wilcox and

Thurow 2006, Jobbágy and Jackson 2007). The magni-

tude of such environmental impacts often take decades

to materialize, by which time they can sometimes be

unmanageable (e.g., Bekle et al. 2004).

Large-scale replacement of natural vegetation with

annual agricultural crops can alter the hydrologic

balance of a region (Scanlon et al. 2005). The magnitude

of such changes depends on a number of factors,

including evaporative demand and precipitation pat-

terns, canopy interception, growing-season length,

agricultural land management practices, soil water

storage and infiltration characteristics (e.g., Brauman

et al. 2010). In arid and semiarid regions where

vegetation productivity tends to be water limited, plants
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and ecosystems have adopted strategies to access and

use nearly all available water in the surrounding

environment (Hillel and Tadmor 1962, Schenk and

Jackson 2002, Weltzin et al. 2003, Seyfried et al. 2005).

As a result, deep soil moisture drainage that could

become groundwater recharge tends to be small. One

common implication of this exhaustive water-use

behavior is the retention and accumulation of significant

quantities of salts in the plant-accessible regions of the

vadose zone.

Annual agricultural crops are often shallowly rooted

and, unlike native species, may not be able to extract soil

water at low matric potentials (Canadell et al. 1996,

Jackson et al. 1996). Shorter growing seasons and other

differences in crops compared with natural vegetation

can all leave a larger volume of moisture unused in the

soil (Savage et al. 1996). Land-use changes from natural

vegetation to agriculture in semiarid settings can

therefore lead to the onset of deep soil water drainage

where it was negligible before (Oconnell et al. 1995,

Seyfried and Wilcox 2006, Scanlon et al. 2007). A

potential consequence of this increased drainage is salt

mobilization and migration in the vadose zone, which

can pose a threat to water quality through salt leaching

to surface and groundwater systems. Over longer time

scales, however, the land may become unproductive if

water tables rise sufficiently to affect plant growth and if

salts accumulate at the surface through capillary rise and

evaporative concentration (Williams 1987). The present-

day salinity crisis of Australia is a good example of the

long-term implications of poorly managed land-use

change and agricultural expansion at the expense of

native vegetation. Waterlogging and soil salinization

from land clearing over a century ago have resulted in

the loss of thousands of hectares of agricultural land and

continue to cost the Australian economy millions of

dollars each year through lost productivity and land-

value depreciation (Australian Bureau of Statistics 2002,

Clarke et al. 2002).

The purpose of this study was to evaluate how

vadose-zone soil water and salt dynamics are altered

when natural woodland ecosystems are replaced by

large-scale dryland agriculture. We focused on semiarid

regions of central Argentina, hypothesizing that ex-

panding dryland agriculture there would cause rapid

and large-scale mobilization of salts stored beneath the

natural woodlands. Previous observations showed im-

portant changes in surface water and shallow chloride

concentrations attributable to agricultural conversion

(Santoni et al. 2010). Here, we used a unique deep-soil

data set to quantify soil water storage, groundwater

recharge, and salt inventories using soil cores and

geophysical measurements to determine how wood-

land-to-agriculture conversions alter water and salt

dynamics in the deep vadose zone. We used a

combination of soil moisture, soil-water chemistry, and

geophysical soil electrical-resistivity measurements along

a chronosequence of 6-yr-old to ;90-yr-old agriculture

and paired woodland plots. The proximity and hydro-

logical links between our study region in the Espinal and
the adjacent Pampas, one of the most productive

agricultural provinces in the world (FAO 2007), amplify
the long-term implications of current land-use changes

and the future of sustainable land use there.

METHODS

Regional setting

Our study region in the Espinal province is a 120-km2

area located ;60 km southeast of the city of San Luis,

Argentina (Fig. 1). This section of the Espinal (originally
covered by forests) is located in the western highland

edge of the sedimentary plain that covers central
Argentina and stretches to the lower Pampas (originally

covered by grasslands) and the Atlantic Ocean to the
east (Fig. 1). The fine, unconsolidated sandy materials

consisting of quartz, feldspars, and volcanic glass that
underlie the region are loessic sediments derived from
the Andes to the west and Sierra Pampeanas and Paraná

basins to the north beginning about 10 million years ago
(Iriondo 1997, Zárate 2003). The proximity to the

original sediment sources makes the loess in our study
sites sandier than is typical for loess-derived soils (sand

fraction .70%). The thickness of these loessic sediments
in our region is .60 m (San Luis Groundwater

Resources Project 2002).
The regional climate is semiarid with a mean annual

rainfall of ;525 mm that occurs mostly (;80%) in the
warm season (November to March). Mean atmospheric

temperatures in the austral winter and summer range
from ;68 to 108C and ;228–268C, respectively. Despite

seasonally concentrated and episodic rainfall, surface
water-transport features are absent across the landscape,

suggesting that runoff has been minimal during the
;9000-yr lifetime of the surface sediments (Santoni et

al. 2010).
Prior to the introduction of cattle in the 1600s the

vegetation of the Espinal province was characterized by
dry woodland ecosystems dominated by Prosopis

caldenia, P. flexuosa, and Geoffroea decorticans trees,
which formed a fairly dense woody system when
undisturbed by grazing, fire, or other disturbances

(Dussart et al. 1998, Lewis et al. 2009). European
settlements in the 1880s to 1920s led to the establishment

and subsequent expansion of agriculture and intensive
grazing. Since the 1980s the rate of agricultural

expansion has accelerated through deforestation and
the conversion of grasslands and pastures to crop

production fueled by the rising global demand for
soybean, corn, and other grains (Viglizzo and Frank

2006, Zak et al. 2008). To date, nearly 65% of the
Espinal phytogeographical province has been replaced

by crops and pastures (Informe Regional Espinal 2007).

Site selection

We selected a total of 13 sites (5 dry woodland and 8

adjacent agriculture sites), with the agriculture sites
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having been continuously cultivated for the last 6 to

;90 years. The dry woodland sites (DF1–DF5) were

similar to each other in terms of tree density, canopy

cover, and biomass characteristics and were typical of

the woodland ecosystems in the region (Dussart et al.

1998, Lewis et al. 2009). Agriculture sites were of 6

(AG1), 15 (AG2), 30 (AG3, AG4), ;40 (AG5, AG6),

;90 (AG7), and ;70 (AG8) years of age. The ages of

the agriculture sites were determined from Landsat

imagery for the youngest site (2000–2002 images), from

historic aerial photographs for the 15- to 40-yr-old sites,

and from aerial photographs and landowner histories

for the 70- and 90-yr-old sites. Paired woodland and

agriculture sites (DF1–AG1, DF3–AG5/6, DF4–AG7,

and DF5–AG8) with similar geological and geomor-

phological traits were used for adjacent comparisons.

All selected agricultural sites were unirrigated and were

subject to typical crop rotations of the region, primarily

a combination of annual crops such as corn, sunflower,

wheat, and soybean since the 1990s and alfalfa pastures

and annual forage grasses during the 1980s and before

(Viglizzo and Frank 2006). The only fertilizer applied in

crop fields is nitrogen, mostly in the form of urea and

typically at rates ,100 kg�ha�1 �yr�1. Woodland and

agriculture plots selected for the study were at least 0.5

km2 in area and had no significant topographic

undulations, slopes, roads, or other cultural or natural

disturbances.

FIG. 1. (a) Sites investigated in this study, located within the Espinal phytogeographical province of central Argentina. (b)
The vast Pampas sedimentary plain, one of the most agriculturally productive regions in the world, located east of San Luis,
receives surface water and potentially ground water draining from (c) the highland rim where the study sites are located. Eight
agriculture sites with ages 6 (AG 1), 15 (AG 2), 30 (AG 3, AG 4), 40 (AG 5, AG 6), 90 (AG 7), and 70 (AG 8) years, and five dry
woodland sites (DF1–DF5), are all located within a 1538 km area near the city of San Luis. [Image (c) is from Google Earth].
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Soil sampling and analysis

Soil samples were collected from eight agriculture and
five dry woodland sites on three occasions between

February 2009 and March 2010. Paired sites were always
sampled either on the same day or within 2–3 days. At

each site one or more boreholes was made using a
bucket auger to a maximum depth of 10 m for soil

sampling. The occurrence of caliche, which was encoun-
tered occasionally in the landscape, limited the augering

to 6 m at the AG2 site and 7 m at the DF1 and DF5
sites. Soil samples were collected in 0.5-m increments in

each borehole. Approximately 150–200 g of soil from
each 0.5-m interval were subsampled after homogenizing

the extracted soils. To minimize soil moisture losses,
samples were immediately placed in air-tight double

polyethylene bags.
Gravimetric moisture content of soils was obtained by

oven-drying a portion of each collected sample at 1058C
to constant mass. The hydrometer method was used to

determine the texture characteristics of soil samples (;6
samples per borehole) from each study site (Gee and

Bauder 1986). The concentrations of Cl�, Br�, SO4
�2,

NO3
�2, and PO4

�3 in 1:1 mixtures of oven-dried soil and
deionized water were measured in the laboratory using

an ion chromatograph (Dionex IC-2000; Dionex
Corporation, Sunnyvale, California, USA). Bulk density

(qb) of soils was estimated (1.6 g/cm3) based on the
average soil texture characteristics (sand 73%, silt 24%,

clay 3%; n¼ 83 core samples) (Saxton and Rawls 2006).

Geophysical characterization of salt distributions

The abundances of salt and water influence the

electrical conductivity of soils. In consequence, electri-
cal-resistivity imaging (ERI) can be used to map soil-

conductivity patterns in the subsurface. Resistivity
imaging is also useful for accessing deeper parts of the

subsurface that are beyond the reach of augers. ERI is a
well-established method used for commercial water and

mineral prospecting. Its adoption in environmental
hydrology (Slater et al. 2000) and ecohydrological and
biological research (Jackson et al. 2005, Jayawickreme et

al. 2008, Robinson et al. 2008), however, is relatively
recent.

To obtain soil resistivity at the study sites, a multi-
electrode resistivity unit was used. Electrodes were

installed in a straight line with either 2 m or 4 m (sites
AG8–DF5) separation distances between electrodes to

attain the desired imaging depths and resolutions.
Standard electrode-pairing methods (Wenner, Dipole-

Dipole, or Schlumberger; Loke 2000) were used to
capture the optimal two-dimensional (2D) distribution

of ground resistivity. The 2-m electrode separation
allowed for an imaging depth of ;20 m, whereas the

4-m electrode separation extended the imaging depth to
;40 m. At most sites, resistivity data were collected

along 142-m-long transects. At the AG8–DF5 sites we
collected resistivity data along a 1.1-km transect

traversing the woodland (DF5)–agriculture (AG8)–

woodland (south of AG8) transition to capture potential

soil conductivity and land-use relationships. The field

data collected were inverted with commercially available

RES2DINV software (Loke 2009) to obtain estimates of

soil conductivity at each site. A simple conventional

least-squares scheme was used for inverting all data sets.

To differentiate the relative influence of water and salt

contents on measured soil resistivity, we supplemented

the field measurements with detailed resistivity measure-

ments in the laboratory using soil samples from the field

sites. Using soils with saturation-extract salt concentra-

tions of 5060, 1666, 292, and 241 lS/cm, we manipulated

soil water contents to determine relationships of soil

moisture and salt concentrations to soil electrical resis-

tivity. These measurements were made in a Plexiglas box

with terminals for current injections and electrical

potential readings. A soil volume replicating the bulk

density of soils under field conditions was carefully

packed in the Plexiglas box multiple times with different

soil water contents for measuring the resistivity–soil

moisture relationship. According to these laboratory

manipulations, the soil water saturation (S ) to soil

resistivity (q) relationship for all samples could be

described by the following power-law function:

S ¼ mq�n ð1Þ

where n ¼ 0.803 6 0.04. The coefficient m is related to

salt concentration of the soil as

m ¼ aC�b
s ð2Þ

where a and b are fitting parameters with values 4286.8

and 0.98 (R2 ¼ 0.9), respectively; Cs is measured salt

concentration in soil (mg/kg).

Groundwater recharge and salinity assessment approach

Groundwater recharge at the study sites was estimat-

ed using the chloride mass balance (CMB) and tracer

front displacement (TFD) methods (Allison and Hughes

1978, Walker et al. 1991, Allison et al. 1994). According

to the CMB method, recharge (R) can be computed as

R ¼ Cp=Cs ð3Þ

where Cp is the Cl
� deposition rate (g�m�2�yr�1), and Cs

is measured Cl� concentration in soil water (g/m3). Cp

for the region is ;246 6 16 mg�m�2�yr�1 (mean 6 SD)

(Santoni et al. 2010). Cs was computed based on the

method described in Phillips (1994).

The TFD method is useful for estimating R where the

steady-state assumption required for the CMB method

may not hold because of a recent land-use change. The

method requires fewer assumptions than the CMB

method (see Allison et al. 1994, Wood and Sanford

1995). R according to TFD is expressed as

R ¼ hv ¼ h½ðZ2 � Z1Þ=ðt2 � t1Þ� ð4Þ

where v is the tracer front displacement velocity, (t2�t1)
is the time since land-use change, Z1 and Z2 are
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positions of the Cl� front corresponding to times t1 (dry

woodland) and t2 (agriculture), and h is the average

moisture content over the Z2,Z1 interval.

An increase in soil water infiltration would first result

in an increase in soil moisture, assuming the soil is below

field capacity initially. As a result, any change at the

water table will be delayed by time Tgw, which is a

function of the vadose-zone thickness (Zvz), soil

moisture deficit (Dh), and the recharge rate (R) (Cook

et al. 1993, Leaney et al. 2003). Tgw can be expressed as

Tgw ¼ ZvzDh=R: ð5Þ

The value of Dh is computed as the difference in

averaged moisture content between agriculture and dry

woodland soil profiles below 2.5 m.

The onset of recharge at the groundwater table would

raise the water table at a rate of DGWz, which can be

expressed as

DGWz ¼ ðR� DÞ=U ð6Þ

where U is formation porosity and R and D are rates of

groundwater recharge and discharge, respectively. While

the discharge rate (D) would likely change slowly if the

water table began to rise, we assume this term to be

negligible for the timescale of our analysis; U is assumed

to be constant with depth.

A downward-migrating moisture front would dissolve

and transport salts previously stored in the vadose zone.

For this transient process, and assuming nearly all the

vadose salts would ultimately be released to the water

table, the resulting groundwater salinity (Cgw) can be

computed as;

Cgw ¼ ðMvz þMgwÞ=ðRt þ UZmlÞ ð7Þ

where Mvz is the mass of salt added from the vadose to

saturated zone, Mgw is the mass of salt in groundwater

initially (500 mg/L; San Luis Groundwater Resources

Project 2002), t is the time for transfer of salts from

vadose to the saturated zone, and Zml is mixing zone

thickness (assumed to be 5 m) where incoming and

existing groundwater would mix primarily due to

diffusive processes (Leaney et al. 2003). This estimate

assumes the groundwater salinity change is only due to

salt loading from the recharging water and no salt is lost

from groundwater during time t.

RESULTS

Salt and water distributions in woodlands and agriculture

Geophysical and soil coring data provide a clear

picture of changes in the subsurface, highlighting the

impact of agriculture on soil salinity, water availability,

and recharge. The ;1.1-km-long electrical resistivity

transect traversing the woodland, agriculture, and

woodland succession at the DF5 and 70-yr-old AG8

study sites revealed significant spatial differences in soil

electrical resistivity between the two land uses (Fig. 2).

The low-resistivity (high-conductivity) horizon between

;3 m and 13 m depth in the woodlands (at lateral

distances of 0–360 m and 900–1100 m in Fig. 2), for

example, is clearly absent in the ;540-m-wide crop field

(360–900 m). The well-defined boundaries of agriculture

and woodland units and their clear spatial correlation to

measured soil-resistivity patterns suggest a strong

coupling between the above- and belowground systems.

The contrast in soil moisture profiles (Fig. 3) between

the woodlands and the agriculture plot further illustrates

the coupling between land use and the vadose zone.

Soil chemical analysis from deep coring in all of the 6-

yr-old to 90-yr-old woodland sites confirmed the

presence of large water-soluble salt inventories in the

vadose zone of the region. Extractable chloride and

sulfate were the most abundant anions (Table 1).

Generally all woodland sites had low Cl� concentrations

in the top 1–3 m (Fig. 4a). Below that depth however, a

sharp increase in Cl� concentrations was observed,

which remained elevated in all of the ;10-m-deep soil

profiles. Compared to the woodlands, where the aver-

aged Cl� concentration was ;100 mg/kg, the paired

FIG. 2. Two-dimensional soil electrical-resistivity (q) profile along the woodland–agriculture–woodland transect at sites AG 8
and DF 5 (see Fig. 1 for location). The plot in the center (from ;360 m to 900 m) has been in agriculture for nearly 70 years. The
groundwater table is ;35–40 m below surface. Topographic undulations were minimal along the transect, with ,3 m elevation
difference from the beginning to the end. The thin, but spatially continuous, low-soil-resistivity (high-soil-conductivity) zone (;3–
13 m) beneath woodlands (0–360 m, 900–1100 m) illustrates areas with high salt concentrations that are conspicuously absent
under agriculture.
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agriculture sites with deep soil cores (AG5, AG6, AG7,

and AG8) were nearly devoid of Cl� (,5 mg/kg)

throughout the ;9-m-deep profiles (Fig. 4b). The 30-

yr-old AG3 and AG4 sites also had completely leached

Cl� profiles in the sampled 9.5–10 m depth. The excep-

tions were the young agriculture sites, 6-yr-old AG1 and

15-yr-old AG2. Both of these sites showed Cl� profiles

resembling that of the nearby woodlands (DF1, DF2),

presumably because of insufficient time for complete

leaching to have taken place.

Sulfate concentrations in soil cores were consistent

with the soil Cl� data but showed more spatial

variability and some variation with respect to agriculture

age and leaching (Fig. 4c and d). All woodland sites on

average had over 250 mg/kg of SO4
�2 in the 2–9 m

depth. Comparatively, sulfate was nearly absent (2.8 6

3.2 mg/kg) in older (.30 yr) agriculture sites (AG3–

AG6) except for the 90-yr-old AG7 site, where the SO4
�2

concentrations were similar to values in its paired dry

woodland (DF4); this difference is likely the result of

gypsum or other sulfate-bearing minerals that accu-

mulated locally in the sediments (San Luis Groundwater

Resources Project 2002). Albeit minor, AG3 and AG4,

which are 30-yr-old plots, also showed lower SO4
�2

concentrations than the older AG5 and AG6 plots.

Compared to older sites, the younger agriculture sites

had substantially greater SO4
�2 concentrations. The 15-

yr-old AG2 site had over 3000 mg/kg of SO4
�2 in the 4–

6 m depth interval, the highest concentration observed at

any site. While soil coring at AG2 was limited to the top

6 m of soil, geoelectrical profiles indicated the presence

of a much thicker (.10–15 m) conductive horizon with

significant salt concentrations. Soil coring at the nearby

DF2 dry woodland also confirmed the presence of high

SO4
�2 levels to at least 10 m depth (Fig. 4c).

Salt losses in agriculture plots were accompanied by

consistent increase in soil moisture across depths.

Average gravimetric soil moisture profiles in older

agriculture sites (AG3–AG8) were consistently higher

than in woodland plots (DF2–DF5; Fig. 5). Comparing

values for these categories, the average relative moisture

difference was ;291 mm, a 53% increase in vadose water

storage for conversions of dry woodland to agriculture

in the 0–9 m depth. Soil moisture increases were also

evident in the 6-yr-old and 15-yr-old agriculture sites,

where the average moisture increase with agriculture was

FIG. 3. Chloride and sulfate concentrations in soil cores at
the DF 5 and AG 8 study sites. Agriculture soils show clear
evidence of near-complete salt leaching compared to the nearby
woodland. The spatial dimensions of this contrast are clearly
captured by the electrical-resistivity transect at the site (Fig. 2).
Note the log scale of the x-axis.

TABLE 1. Solute concentrations (mean 6 SD) in 6–10 m deep soil profiles at the various dry woodland (DF) and adjacent
agricultural (AG) study sites in Espinal province, Argentina.

Site�

Solute concentration (mg/kg)

Cl� SO4
�2 Br� NO3

�2 PO4
�3

AG1 (6 yr) 85 6 107 176 6 325 0.9 6 0.8 2.6 6 1.6 - -
DF1 54 6 65 147 6 189 0.8 6 0.7 0.1 6 0.1 - -
AG2 (15 yr) 64 6 113 338 6 495 0.4 6 0.3 0.5 6 0.3 0.1 6 0.1
DF2 99 6 85 926 6 602 0.4 6 0.2 0.2 6 0.2 0.1 6 0
AG3 (30 yr) 1.1 6 1 1.4 6 0.2 0.1 6 0 0.3 6 0.5 0.2 6 0.1
AG4 (30 yr) 0.8 6 0.5 1.3 6 0.3 0 6 0.1 0.3 6 0.4 0.2 6 0.1
AG5 (;40 yr) 1.1 6 0.8 5.3 6 4.8 0.2 6 0 0.1 6 0.1 0.1 6 0
AG6 (;40 yr) 0.7 6 0.2 3.3 6 3 0.2 6 0 0.1 6 0.2 0.1 6 0
DF3 139 6 66 241 6 147 0.7 6 0.2 0.6 6 0.7 0.1 6 0
AG8 (70 yr) 0.2 6 0.2 2.5 6 0.6 0.1 6 0.1 1.1 6 1.4 - -
DF 141 6 138 355 6 363 0.3 6 0.3 0.7 6 0.7 - -
AG7 (;90 yr) 2.7 6 2.1 295 6 259 0.2 6 0.1 0.8 6 0.4 0.1 6 0
DF4 145 6 0.7 235 6 171 0.7 6 0.3 0.9 6 0.6 0.1 6 0

Notes: Bromide, nitrate, and phosphates were generally low at all sites; ‘‘- -’’ signifies no measurable phosphate. Chloride and
sulfate were the most abundant anions, with significant differences in their distribution between agriculture and woodland areas.

� All study sites were at least 0.5 m2 in area. All selected agricultural sites were unirrigated, and the length of time the site had
been in agriculture is given in parentheses.
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;31% in the top 7 m (0.056 6 0.008 g water/g soil for

agriculture vs. 0.043 6 0.003 g water/g soil for wood-

land). In native woodlands, moisture variability was

minimal across different sites in the top 1 to 3 m of soils.

Additionally, all woodland sites had significantly less

moisture in the 1.5–3 m interval than any of the

agriculture sites had. This difference is almost certainly

attributable to deeper and more persistent root water

uptake by woodland trees compared to agricultural

plants, similar to processes observed in nearby regions

(Marchesini et al. 2009, Nosetto et al. 2011). The aver-

age moisture differences between woodlands and older

agriculture were also noticeably large at greater (.8 m)

depth (Fig. 5).

The spatiotemporal progression of vadose-zone

changes following the introduction of agriculture was

FIG. 4. Chloride and sulfate profiles at the study sites. Paired woodland–agriculture (AG1–DF1, AG6–DF3, AG7–DF4) sites
are identified with thicker lines and the same colors in both woodland and agriculture plots. Chloride and sulfate concentrations in
(a, c) woodland sites are distinctly higher than at (b, d) older agriculture sites. Peak concentration of Cl is reached at slightly
different depths at different woodland sites, but the concentrations are similar below 5 m. Sulfate, however, is substantially
different among woodlands. Sulfate at the 90-yr-old AG 7 site is potentially affected by the presence of gypsum or other sulfate-
bearing minerals.
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evident from the electrical-resistivity differences between

6-yr (AG1), 40-yr (AG6), and 70-yr (AG8) agriculture

sites and their paired woodland plots (DF1, DF3, and

DF5, respectively). Differences between AG1 and DF1

suggest that changes reaching depths of ;5–7 m may

occur in less than a decade after introducing agriculture

(Fig. 6a). These relatively rapid changes appeared to be

spatially uniform with little evidence of preferential

flows or concentrations. An increase in soil moisture

(;31% g/g in the top 7 m of the AG1 crop field

compared to its paired forest) appeared to be the

dominant hydrologic change during early phases of

vadose zone change, visible as the increased soil

conductivity in the resistivity image (Fig. 6a). At more

intermediate time scales, the vadose-zone differences

appeared to propagate deeper (.15 m), comparing for

instance the 40-yr-old agriculture site (AG6) and its

paired woodland (DF3) (Fig. 6b). The higher electrical

resistivity of agricultural soils at AG6 compared to its

paired woodland site shows that vadose-zone salt losses

have propagated deeper than the augured 9 m depth. At

the 70-yr-old agriculture site (AG8), a complete

transformation of the vadose zone resulting from these

salt losses is evident, with much of the vadose zone

showing increased soil resistivity compared to the

adjacent woodland (Fig. 6c).

Solute inventories and sources

Differences in salt concentrations between agriculture

and woodland soils translated to substantial vadose-

zone salt losses with woodland-to-agriculture conver-

sions. Based on average solute concentrations in the soil

profiles, total chloride and sulfate inventories among

four older (�40 yr) agriculture sites ranged from ;60 to

145 kg�ha�1�m�1 compared to their paired woodlands

where those inventories were ;6000–8000 kg�ha�1�m�1
(Table 2). Furthermore, electrical-resistivity imaging

(ERI)-derived average salt concentrations below the

augured 9 m depth showed the presence of large salt

inventories at most woodland sites (Table 3). At the

younger 6- and 15-yr-old agriculture sites, salt invento-

ries were substantially larger than those at older

agriculture sites, but were not greatly different from

the adjacent woodlands (Table 2).

Chloride and sulfate in soil cores appeared to have

originated from different sources, which may have

important implications for spatial distribution of vadose

salts in the region. Evaporative concentration of salts

from precipitation appeared to be the main cause of Cl�

accumulation based on the Cl� : Br� ratio (252–323) in

woodland soil profiles (Carpenter 1978, McCaffrey et al.

1987). However, a similar conclusion could not be

reached for sulfate, which was ;1.6 to .8.0 times that

of Cl� concentrations. Available evidence suggests that

the loess is rich in S-bearing volcanic material derived

from both local and distant sources (Zárate 2003).

Depending on how these materials are distributed and

incorporated into the loess locally, and how the loess has

evolved over time, a degree of spatial variability is

expected, as we observed across our study sites.

Groundwater recharge

Mean annual groundwater recharge estimated with

the chloride mass balance (CMB) method was ,1 mm/

yr in all dry woodland sites, extremely small relative to

the 525 mm/yr rainfall in the region (Table 2; Eqs. 3 and

4). In contrast, the estimated recharge across all old-

agriculture (�30-yr-old) sites was 29.7 6 8.8 mm/yr

(mean 6 SD) , approximately 6% of annual rainfall

(;525 mm). The estimated groundwater recharge was

.31 mm/yr for the same agriculture sites using the

tracer front displacement (TFD) method and the

approximate salt front displacements determined with

the electrical-resistivity transects (Table 2).

DISCUSSION

Land-use conversions from natural semiarid wood-

land ecosystems to agriculture resulted in significant

increases in vadose-zone water as well as salt leaching to

deeper layers. The onset of these changes appeared to be

quite rapid and consistent based on soil cores and

geophysical images of the deep vadose zone. Lower

annual water use by agricultural crops and sandy

unconsolidated soils that readily facilitated deep soil

FIG. 5. Average gravimetric soil moisture distributions at
old agriculture (AG3–AG8, 30–90 yr-old) and dry woodland
(DF1–DF5) sites. Error bars show the range of observations
between sites for each sampled depth. Moisture contents are
consistently higher in agricultural soils than in woodlands. Data
were collected between February 2009 and March 2010. The
range of moisture observed at shallow depths may be influenced
by water use and storage differences between measurements.
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water drainage appeared to foster these observed

changes in the vadose zone of this system.

The woodlands investigated in this study (Espinal

province, Argentina; see Fig. 1) exhibited groundwater

recharge rates (,1mm/yr) typical of semiarid natural

ecosystems, but changed substantially following land-

use conversions (Noy-Meir 1973, Cook et al. 1989,

Scanlon et al. 2009). According to our recharge

estimates, each hectare of woodlands converted to

agriculture may contribute ;300 m3 of additional water

into the region’s aquifers every year. However, the

actual impact of this increased recharge may not become

evident immediately following the conversion to agri-

culture, but will likely be lagged by ;40–100 years

depending on the thickness of the vadose zone, which

ranged from ;35 to 80 m at our study sites (Eq. 5).

Following the above lag period, the increased recharge

at the water table will cause the groundwater table to

rise, which we estimate to be a conservative ;77 mm/yr.

This estimated rate however is a lower bound since

porosity is likely to decline and moisture to rise in the

deeper vadose zone below the depth at which their direct

measurements were made (Eq. 6).

FIG. 6. Soil electrical-resistivity differences (qag – qwood) between parallel geoelectrical transects in DF1–AG1 and DF3–AG6
paired sites and nearby sections from 150–292 m and 400–542 m at DF5–AG8 sites (Fig. 2). Positive differences indicate areas
where soil electrical conductivity has decreased in agricultural soils relative to the conductivity of the woodland soils. All data sets
were corrected for temperature effects prior to differencing (Sen and Goode 1992). (a) Uniform and layered resistivity difference
between the 6-yr-old agriculture–woodland pair is driven by a ;31% (0–7 m) increase in soil moisture in the agriculture plot. At
greater depths (. ;7 m) resistivity differences are negligible, indicating similar salt-water characteristics. (b) At the 40-yr-old crop
field (AG 6) vadose-zone transformations have propagated deeper, with positive resistivity difference (center) revealing the effect of
salt leaching in agriculture on soil electrical conductivity despite a substantial increase in soil moisture (53% in 0–9 m depth). (c)
Salt leaching has progressed even further at the 70-yr-old site based on the pervasive soil resistivity increase in the ;5–20 m depth
range. Resistivity decrease below ;20 m depth there could be suggestive of increasing water contents and salt concentrations above
the water table located ;35–40 m below the surface. At the near surface, woodland soils tend to exhibit higher soil resistivities and
resistivity variations compared to agricultural soils. This result is related to tree distribution along the measured transects and is a
consequence of potentially very low soil moisture contents in the vicinity of trees. The negative resistivity differences toward the
edges in panel (b) and near the surface in panel (c) are the results of such higher and more variable woodland soil resistivities.
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Increased soil moisture and deep drainage following

the cultivation of woodlands is displacing salts from the

vadose zone. This process is clearly evident from our soil

cores and geophysical images (Figs. 2 and 4). The

absence of the shallow conductive horizon in the ;540-

m-wide AG8 cropland (Fig. 2), for example, shows that

salt leaching is pervasive within agricultural land uses.

We estimate that salt leaching could account for a

gradual one-time release of .100 Mg/ha of chloride and

sulfate from soils to the regional aquifers. This estimate

would be larger if total salt concentrations based on ERI

(electrical-resistivity imaging) were considered. Based on

an approximate salt front displacement of ;36 cm/yr

(estimated at AG3; AG4, �10 m; AG6, �13 m; and AG

8, �30 m), the leaching Cl� and SO4
�2 salts alone can

potentially raise the region’s groundwater salinity to

over 4000 mg/L from the present ;500–1000 mg/L, as

described by Eq. 7. This estimate, which assumes no

secondary transport of salts from the saturated zone via

lateral groundwater flow, is much larger than our

geophysics-based estimate of groundwater salinity

(;1600 mg/L) at AG8–DF5, which showed evidence

of vadose salts already reaching the saturated zone.

However, the resolution decay and other limitations

with geophysical methods reduce the reliability of ERI-

derived salinities at greater depths. Nonetheless, collec-

tive evidence so far suggests that deep soil water

drainage and salt leaching from the vadose zone is

already occurring and will continue to occur in the

region because of land-use conversions.

Pervasive increases in soil salinity or groundwater

levels have not yet been documented in central

Argentina. This may be because large-scale deforesta-

tion for agriculture is a relatively recent phenomenon in

the region (Mapa forestal provincial de San Luis 2002).

The absence of systematic groundwater/surface water

monitoring and reporting may also be a reason. Our

observations nonetheless suggest that such hydrological

impacts are likely to emerge in the near future.

Furthermore, the unfolding land-use-change scenario

in central Argentina bears many similarities to the

situation in Australia, where thousands of hectares of

agricultural lands have been lost in the recent decades,

attributable to salinization and waterlogging (Pierce et

al. 1993, George et al. 1997). Widespread deforestation

there for dryland agriculture over a century ago has

shifted the water balance in favor of higher groundwater

recharge (George et al. 1997). As a result, rising water

tables have waterlogged significant areas of the land-

scape. Naturally saline groundwater that reached the

surface was further concentrated by evaporation,

making the salinity levels toxic for many plants. Even

though the salinity implications of woodland removal in

TABLE 2. Soil sampling depths, vadose-zone salt storage, and groundwater-recharge estimates at the eight agricultural (AG) and
five paired dry woodland (DF) study sites.

Site
Borehole depth

(m)

Salt storage (kg/ha) Recharge (mm/yr)�

Cl�þ SO4
�2 ERI�§ CMB CFD

AG1 (6 yr) 9 28 290§ 49 000 - - 12
DF1 7 23 033 38 000 0.1 - -
AG2 (15 yr) 6 100 715 143 000 14.1 �12.5
DF2 10 87 109§ 128 000 0.1 - -
AG3 (30 yr) 10 385 - - 22.7 �17.5
AG4 (30 yr) 9.5 316 - - 34 �17
AG5 (;40 yr) 9.5 1110 - - 23.4 �19.7
AG6 (;40 yr) 9.5 567 29 000 29.5 �16 (;32)
DF3 9 55 966 78 000 0.07 - -
AG8 (70 yr) 9 1018§ 21 000 45.1 9.2 (�39)
DF5 7 57 904 103 000 0.08 –
AG7 (;90 yr) 10 47 535 - - 23.3 �9.7 (�24)
DF4 10 57 760 - - 0.06 - -

Note: An ‘‘- -’’ entry means that no data were computed.
� Recharge estimates are based on chloride mass balance (CMB) and tracer front displacement (TFD) methods. TFD represents

a potential minimum-recharge estimate, particularly at older agriculture sites where a Cl� peak was not readily visible in soil
profiles. A conservative 10-m displacement was assumed in those situations. TFD estimates in parentheses for AG6, AG7, and
AG8 are based on tracer displacement distances estimated with geoelectrical profiles (13m, .20m, and .35m, for AG5, AG7, and
AG8, respectively).

� ERI is the electrical resistivity-based, spatially averaged salt concentration along a ;100-m section of the resistivity transect for
the same cored depth (values to the nearest thousand kg/ha).

§ Computed budgets are for the same depth as the paired site.

TABLE 3. Electrical-resistivity imaging (ERI)-based salt-con-
centration estimates below the augured depths at woodland
sites (Eqs. 1 and 2).

Site
Depth interval

(m)
Salt concentration�

(mg/kg)

DF1 7–20 2900–1400
DF2 10–20 3200–1500
DF3 9–20 1600–800
DF5 7–20 800–400

� Estimated concentration range is based on 11% and 23%
soil-water saturations from woodland and agriculture soil
profiles, respectively.
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Australia were recognized almost a century ago (Wood

1924), salinization and waterlogging have continued

despite significant efforts to restore the original water

balance (Clarke et al. 2002). Through social costs,

financial losses from lost agriculture productivity,

depreciated land value, and mitigation costs, these

changes continue to cost the Australian economy

billions of dollars each year (Short and McConnell

2000). Whether a similar scenario will unfold in

Argentina is uncertain at the moment, but our findings

suggest that monitoring and caution is warranted,

especially because of the surface and groundwater

connectivity between the semiarid regions where defor-

estation is expanding and the lowland plains of Pampas

where agriculture is already well established. A few

surface-water samples collected in 2009 along Rio

Quinto, the main outlet for water discharges from the

study region to the lowland Pampas, showed a .2000

mg/L increase in dissolved solids along a ;100-km

stretch downstream. These and other observations

suggest further salt and water loading may seriously

affect ecosystem sustainability in the lowlands where

groundwater discharges are mainly plant mediated

(Archibald et al. 2006, Nosetto et al. 2009, Portela et

al. 2009).

Restoring the water balance of forests under agricul-

tural fields is a necessary first step to mitigate current

hydrological shifts. Woodland conversions to cultiva-

tion can substantially reduce the vegetation cover and

decrease the evapotranspirative flux significantly (Fig.

7). In wetter areas of the pampas, soybean cultivations

have been shown to reduce the evapotranspirative flux

by nearly one third from ;1100 mm/yr in plantations to

;700mm/yr, demonstrating also that woodlands are

large water users (Nosetto et al. 2011). Evapo-

transpirative reductions of the magnitude identified by

Nosetto et al. (2011) are perhaps less likely in semiarid

areas, but are sufficiently large to cause deep soil water

drainage, as we have observed in this study. Man-

agement strategies that try to optimize plant water

consumption in agricultural areas, including double

cropping (two crops per year), deep-rooted perennial

species (e.g., alfalfa), or the inclusion of tree plantations

in the landscape are some agronomic options that can

help to restore the water balance and maximize biomass

production at the same time (Dunin et al. 1999, George

et al. 1999, Boletta et al. 2006).

Our findings on land-use conversions in central

Argentina highlight the water-resource implications of

agriculture in a semiarid setting. With an anticipated rise

in demand for arable lands for crops and other uses

globally, the current wave of deforestation in central

Argentina is unlikely to cease in the foreseeable future.

As a result, broader hydrological impacts in the region

can be expected. Drawing important lessons from costly

experiences in Australia and elsewhere, stakeholders

need to identify feasible solutions to impede land

clearing and mitigate the hydrological impacts of vast

agricultural operations in the region. Concurrently, the

scientific community should seek additional data and

increase efforts for a more accurate accounting of the

salinity and hydrological changes that result from land-

use transformations here and elsewhere around the

world.
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31:97–106.

McCaffrey, M. A., B. Lazar, and H. D. Holland. 1987. The
evaporation path of seawater and the coprecipitation of Br�

and Kþ with halite. Journal of Sedimentary Petrology
57:928–937.
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Santoni, C. S., E. G. Jobbágy, and S. Contreras. 2010. Vadose
zone transport in dry forests of central Argentina: role of
land use. Water Resources Research 46:W10541.

Savage, M. J., J. T. Ritchie, W. L. Bland, and W. A. Dugas.
1996. Lower limit of soil water availability. Agronomy
Journal 88:644–651.

Saxton, K. E., and W. J. Rawls. 2006. Soil water characteristic
estimates by texture and organic matter for hydrologic
solutions. Soil Science Society of America Journal 70:1569–
1578.

Scanlon, B. R., I. Jolly, M. Sophocleous, and L. Zhang. 2007.
Global impacts of conversions from natural to agricultural
ecosystems on water resources: quantity versus quality.
Water Resources Research 43:W03437.

Scanlon, B. R., R. C. Reedy, D. A. Stonestrom, D. E. Prudic,
and K. F. Dennehy. 2005. Impact of land use and land cover
change on groundwater recharge and quality in the
southwestern US. Global Change Biology 11:1577–1593.

Scanlon, B. R., D. A. Stonestrom, R. C. Reedy, F. W. Leaney,
J. Gates, and R. G. Cresswell. 2009. Inventories and
mobilization of unsaturated zone sulfate, fluoride, and
chloride related to land use change in semiarid regions,
southwestern United States and Australia. Water Resources
Research 45:W00A18.

Schenk, H. J., and R. B. Jackson. 2002. Rooting depths, lateral
root spreads and below-ground/above-ground allometries of
plants in water-limited ecosystems. Journal of Ecology
90:480–494.

Sen, P. N., and P. A. Goode. 1992. Influence of temperature on
electrical conductivity of shaly sands. Geophysics 57:89–96.

Seyfried, M. S., S. Schwinning, M. A. Walvoord, W. T.
Pockman, B. D. Newman, R. B. Jackson, and F. M. Phillips.
2005. Ecohydrological control of deep drainage in arid and
semiarid regions. Ecology 86:277–287.

Seyfried, M. S., and B. P. Wilcox. 2006. Soil water storage and
rooting depth: key factors controlling recharge on range-
lands. Hydrological Processes 20:3261–3275.

Short,R., andC.McConnell. 2000. Extent and impacts of dryland
salinity. Resource Management Technical Report 202. Agri-
cultureWestern Australia, Perth,Western Australia, Australia.

Slater, L., A. M. Binley, W. Daily, and R. Johnson. 2000.
Cross-hole electrical imaging of a controlled saline tracer
injection. Journal of Applied Geophysics 44:85–102.

Tilman, D., J. Fargione, B. Wolff, C. D’Antonio, A. Dobson,
R. Howarth, D. Schindler, W. H. Schlesinger, D. Simberloff,
and D. Swackhamer. 2001. Forecasting agriculturally driven
global environmental change. Science 292:281–284.

Viglizzo, E. F., and F. C. Frank. 2006. Ecological interactions,
feedbacks, thresholds and collapses in the Argentine Pampas
in response to climate and farming during the last century.
Quaternary International 158:122–126.

Walker, G. R., I. D. Jolly, and P. G. Cook. 1991. A new
chloride leaching approach to the estimation of diffuse
recharge following a change in land-use. Journal of
Hydrology 128:49–67.

Weltzin, J. F., et al. 2003. Assessing the response of terrestrial
ecosystems to potential changes in precipitation. BioScience
53:941–952.

Wilcox, B. P., and T. L. Thurow. 2006. Emerging issues in
rangeland ecohydrology: vegetation change and the water
cycle. Rangeland Ecology and Management 59:220–224.

Williams, W. D. 1987. Salinization of rivers and streams: an
important environmental hazard. Ambio 16:180–185.

Wood, W. E. 1924. Increase of salt in soil and streams following
the destruction of native vegetation. Journal of the Royal
Society of Western Australia 10:35–47.

Wood, W. W., and W. E. Sanford. 1995. Chemical and isotopic
methods for quantifying groundwater recharge in a regional,
semiarid environment. Ground Water 33:458–468.

Zak, M. R., M. Cabido, D. Caceres, and S. Diaz. 2008. What
drives accelerated land cover change in central Argentina?
Synergistic consequences of climatic, socioeconomic, and
technological factors. Environmental Management 42:181–
189.
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