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While numerous studies find that deep-saline sandstone aquifers in the United States could store many de-
cades worth of the nation's current annual CO2 emissions, the likely cost of this storage (i.e. the cost of storage
only and not capture and transport costs) has been harder to constrain. We use publicly available data of key
reservoir properties to produce geo-referenced rasters of estimated storage capacity and cost for regions
within 15 deep-saline sandstone aquifers in the United States. The rasters reveal the reservoir quality of
these aquifers to be so variable that the cost estimates for storage span three orders of magnitude and
average>$100/tonne CO2. However, when the cost and corresponding capacity estimates in the rasters are
assembled into a marginal abatement cost curve (MACC), we find that ~75% of the estimated storage capacity
could be available forb$2/tonne. Furthermore, ~80% of the total estimated storage capacity in the rasters is
concentrated within just two of the aquifers—the Frio Formation along the Texas Gulf Coast, and the Mt.
Simon Formation in the Michigan Basin, which together make up only ~20% of the areas analyzed. While
our assessment is not comprehensive, the results suggest there should be an abundance of low-cost storage
for CO2 in deep-saline aquifers, but a majority of this storage is likely to be concentrated within specific
regions of a smaller number of these aquifers.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) projects
that to stabilize the atmospheric CO2 concentration between 440
and 485 ppm, global CO2 emissions must peak between 2010 and
2030 and decrease soon thereafter (Bernstein et al., 2007). Energy
use is the major contributor to greenhouse gas (GHG) emissions,
and although conservation and low-carbon technologies can help
reduce emissions, demand for fossil fuels such as coal is increasing
(Bernstein et al., 2007). One way that fossil fuel use could continue
while constraining GHG emissions is through the implementation of
geologic carbon capture and storage (CCS) (Hoffert et al., 2002;
IPCC, 2005; Pacala and Socolow, 2004), the possibility of capturing
CO2 emissions at large industrial point sources, such as power plants,
and transporting the CO2 via pipeline to sites where the GHG would
be injected underground into geologic reservoirs for long-term
storage.

As a mitigation strategy, CCS will likely see broad-scale deploy-
ment only if large quantities of CO2 can be captured and stored at
costs equal to or less than other emissions avoidance options. The
+1 919 684 5833.
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most promising geologic sink for CO2 is saline aquifers. These appear
to have tens to hundreds of times the storage potential of other
possible onshore CO2 sinks, including coal seams, basalts, and oil
and gas reservoirs (IPCC, 2005). How much CO2 can actually be se-
questered in saline aquifers has been the subject of a number of stud-
ies, as well as a focus of major U.S. and international collaborative
research programs (e.g., the U.S. Department of Energy (DOE) National
Carbon Sequestration Database and Geographic Information System
(NATCARB) and the International Energy Agency Greenhouse Gas
R&D Programme (IEAGHG)). The capacity estimates produced by
these and other studies vary considerably (Bachu et al., 2007), but
first-order assessments at the global scale (Koide et al. 1992) through
more detailed assessments at the continental to national level (e.g.,
the Indian sub-continent by Holloway et al. (2009) and the USDOE
Sequestration Atlas for North America (Department of Energy (DOE),
2010)) repeatedly demonstrate that deep-saline aquifers could store
up to centuries worth of current anthropogenic CO2 emissions.

Less clear is the likely cost of this form of storage. Analyses for
the United States (Bock, 2002), Europe (Hendriks et al., 2004), and
Australia (Allinson et al., 2003) initially suggested storage costs in
saline aquifers might be $0.5–$3/tonne (IPCC, 2005). Subsequent
work, however, has projected costs that are higher and/or more var-
iable (AL-JUAIED and Whitmore, 2009; BCG, 2008; Dooley et al.,
2008; Eccles et al., 2009; McKinsey Climate Change Initiative, 2008).
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Variability in storage costs is important because it can significantly
affect transport costs for CCS. To optimize the overall cost efficiency
of a CCS system, transport costs must be traded off against storage
costs in such a way as to minimize their combined expense (e.g.,
Dooley et al. (2008), Gresham et al. (2010), Middleton and
Bielicki (2009)). This makes accurate information about storage
costs critical.

The value of integrating transport and storage in cost assessments
has been demonstrated by efforts ranging from the IEA GHG Pro-
gramme (Wildenborg et al., 2004) to the SimCCS modeling package
developed by Middleton and Bielicki (2009). The integration is
achieved by using a transport optimization algorithm to link each
CO2 point source in a region to a potential storage reservoir. The
total cost of transport and storage is then computed weighted by
each firm's emissions. Integrated assessments have produced margin-
al abatement cost curves (MACCs) for CO2 transport and storage from
major point sources in North America (Dooley et al., 2004), Europe
(Wildenborg et al., 2004), and China (Dahowski et al., 2009). The
curves are built by adding the potential abatement of emissions
from each point source to the abatement potential of the other
sources in order of increasing cost of transport and storage per
tonne of CO2.

Developers of the MACCs acknowledge that the geologic heteroge-
neity of saline aquifers could lead to storage cost estimates that range
over several orders of magnitude (Dooley et al., 2004). However due
to lack of data and/or methods for adequately incorporating hetero-
geneity in reservoir quality, existing MACCs are based on an average
or even single estimate of storage capacity and cost per aquifer
(Middleton and Bielicki, 2009; Wildenborg et al., 2004); and in
some cases the constant values are applied to all the aquifers evaluat-
ed (Dahowski et al., 2009; Dooley et al., 2004). Thus cost variations
in the MACCs are predominantly the result of varying transport
distances between the CO2 point sources and saline aquifers, and do
not reflect potential additional variability due to storage.

The assumption that storage capacity and cost are constant within
and even among reservoirs is suitable if the reservoirs are small, well-
defined and can be adequately characterized by summary statistics,
as is the case for many oil and gas fields. However, deep-saline aqui-
fers are large, and spatial variations in their reservoir properties can
be significant, leading in turn to significant variations in storage
costs. We illustrate that these variations are not adequately repre-
sented by single or even average capacity and cost estimates by
using a publically available dataset that includes extensive and de-
tailed information on key reservoir properties for 15 deep-saline
sandstone aquifers in the United States. We rasterize these data
where they are dense enough and then input the rasters into our
previously published model (Eccles et al., 2009) to produce corre-
sponding rasters of estimated storage capacity and cost. We then
use these rasters to build purely storage-based MACCs, which do
not include transport costs from existing CO2 point sources and only
describe the resource potential of the aquifers. The rasters and
MACCs are not comprehensive assessments of U.S. storage potential,
but are inclusive enough to show that estimated storage capacities
and costs are not uniformly distributed spatially nor normally distrib-
uted statistically. This means that the use of average capacity and cost
estimates for entire saline aquifers can grossly misrepresent the true
capacity and cost for CO2 storage at many sites within the aquifers.
The MACCs also reveal an inverse relationship between estimated
storage capacity and cost, one in which the regions analyzed are
dominated by relatively high-capacity, low-cost storage sites. This
relationship is not so much tied to the surface area of the aquifers
as it is to their thickness. Further development of spatially-based stor-
age capacity and cost estimates is needed if transport optimization
algorithms are to be used to map out cost-effective configurations
for potential pipeline routes connecting CO2 sources to these aquifers
and similarly large candidate reservoirs.
2. Methods

2.1. Data

Our approach to constructing storage-based MACCs involves using
geospatially referenced reservoir properties that can be rasterized
to represent the aquifers as large, continuous underground entities.
This requires that the geologic property data are (1) extensive and
dense enough to reveal systematic variations within the aquifer at
scales descending to the cell size of the rasters, and (2) that the
data include parameters from which storage capacity and cost can
be determined. These are particularly challenging requirements
for deep-saline aquifers, as they are not as well characterized as
oil and gas reservoirs (Bachu et al., 2007). Publicly available GIS
data from the NATCARB project was, for example, not adequate for
our approach because it satisfied neither requirement. In NATCARB,
deep-saline aquifers as well as other candidate reservoirs with spatial
extents >100,000 km2 are represented as homogeneous bodies and
are summarized only by total storage capacity (Department of
Energy (DOE), 2010). The data on which the capacity estimates are
based can be extensive (Department of Energy (DOE), 2010) but
rarely include permeability and often lack other similarly critical pa-
rameters we need to determine cost using our previously published
model (Eccles et al., 2009).

We used data compiled, digitized and made publically available
by the Texas Bureau of Economic Geology (BEG) for 15 deep-saline
sandstone aquifers located around the United States. These aqui-
fers, outlined in blue in Fig. 1, represent some of the nation's larg-
est sequestration opportunities (Bureau of Economic Geology
(BEG), 2000). The aquifers are indexed to Table 1, which identifies
the aquifers in terms of the basin in which they are located, the
stratigraphic formation or group in which they occur, the total sur-
face area of the aquifer, and how much this area we were able to
rasterize.

The BEG data for the aquifers geolocate eight key reservoir proper-
ties needed by our capacity/cost model; formation depth, permeabil-
ity, net sand thickness, formation thickness, temperature, pressure,
salinity, and porosity. Unfortunately, temperature, pressure, and/or
porosity are sometimes missing from the data records, so where nec-
essary we estimate these parameters using the following published
subsurface gradients: for temperature, 25 °C/km starting at a surface
temperature of 20 °C (Nordbotten et al., 2005); for pressure,
10.5 MPa/km (Eccles et al., 2009); and for porosity, the gradient
given by Bahr et al. (2001), in which porosity declines exponentially
with depth.

We convert the BEG data, which are in various digital formats (see
Table A1 in Appendix), into rasters having a grid cell size of 1 km×
1 km (the choice of this resolution is explained in Section 2.2.3).
Because most of the BEG data are in the form of isolines and we un-
aware of the type and density of data used to create the isolines, we
simply rasterize them using the ESRI ArcGIS topo-to-raster tool.
Data files that are in point form are rasterized by kriging. Where an
aquifer is represented as a polygon, we convert it directly into a raster
with cell values equal to the value assigned to the polygon.

The variation in the form of the BEG data prevents us from limiting
the extent of interpolation in the rasterization process based on
underlying data density except in the case of point data (Table A1).
For this we rely on the lower limits of the ArcGIS kriging algorithm,
which requires a minimum of ten points to create a raster. More
importantly, the rasters are not extrapolated beyond the extent of
the BEG data.

The end result is a set of rasters of each key parameter that partial-
ly cover each sandstone saline aquifer. Storage capacity and cost in an
aquifer are only modeled where the rasters of all eight key parame-
ters overlap. These regions correspond to the grey and/or colored
areas that lie inside the blue outlines of the aquifers in Fig. 1 and



Fig. 1. Spatial distribution of geosequestration quantity and cost. (a) Quantity of storage in tonnes per square kilometer and (b) Distribution of cost in BEG study areas. The basin
areas that may have storage potential but lacked sufficient data to analyze are shown, and plotted within the basin areas are regions where cap depth is too shallow to retain the CO2

belowground. Although Mt. Simon extends further than indicated on the map, our analysis only included geological data characteristic of the Michigan area.
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constitute only 30% of the roughly 700,000 km2 of combined surface
area for all the aquifers.

Note that we restricted our evaluation to sandstone aquifers
since our model for estimating storage capacities and costs
was developed and calibrated using sandstone injection projects
(Eccles et al., 2009). Furthermore, we depict the aquifer as a sin-
gle layer. In reality, the formations or groups containing the aqui-
fers are multilayered, and in general only the sandy layers with
sufficient porosity and permeability serve as part of the aquifer,
since muddy layers are too impermeable. The BEG data are not
detailed enough to separate out the sandy and muddy layers, so
we use the net sand thickness of the formation/group as the
“effective” thickness of the aquifer, i.e. the thickness in which
CO2 can be stored.

For these and other reasons, our study is not a complete assess-
ment of the potential capacity and cost for storing CO2 in U.S. deep-
saline aquifers. Instead it is an analysis of how storage capacity
and cost can vary across such aquifers as revealed by our mapping
method. For a complete explanation of our interpolation and recon-
struction methods for each study area, see Appendix Section A1.



Table 1
List of analyzed formations and map indices.

Basin Formation Surface area (km2) Data coverage Data coverage (km2) Map index

Los Angeles Basin Repetto Formation 15,600 13% 2028 1
Sevier Basin Glen Canyon Group 371,000 29% 107,590 2
San Juan Basin Morrison Formation 49,600 6% 2976 3
Powder River Basin Fox Hills/Lower Hell Creek 69,000 19% 13,110 4
Denver Basin Lyons Sandstone 170,000 38% 64,600 5
Palo Duro Basin Granite Wash 63,800 39% 24,882 6
Texas Gulf Coast Frio Formation 138,600 76% 105,336 7
East Texas Basin Woodbine Formation 97,500 42% 40,950 8
East Texas Basin Paluxy Sandstone 101,300 7% 7091 9
Illinois Basin St. Peter Sandstone 568,800 26% 147,888 10
Black Warrior Basin Pottsville Formation 24,900 10% 2490 11
Michigan Mt. Simon Formation 164,000 25% 41,000 12
Appalachian Basin Oriskany Formation 358,000 42% 150,360 13
South Carolina Coastal Plain Cape Fear Formation 91,700 25% 22,925 14
Eastern Coastal Plain Lower Potomac Group 106,600 6% 6396 15
Alabama Gulf Coastal Plain (missing data) Tuscaloosa Group 16
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2.2. Model

We apply our previously published model (Eccles et al., 2009) to
each grid cell in the rasterized regions in Fig. 1 to produce corre-
sponding capacity and cost rasters from which we can then build a
storage-based MACC. We recognize that a commercial-scale CO2 stor-
age site will in almost all cases require a reservoir volume with a
surface footprint that is much more expansive than the 1 km×1 km
cell size to which we have rasterized the BEG data. In fact, this surface
footprint requirement will vary inversely with the reservoir thick-
ness, increasing where the reservoir thins, and shrinking where the
reservoir thickens, which is why we do not assume a fixed storage-
site area. Similarly, we do not assume a fixed areal configuration for
a storage site, because spatial variability in reservoir quality (e.g., po-
rosity and permeability) will generally lead to an irregular shaped
footprint assuming the site is set up to maximize local storage or min-
imize total costs.

Instead, we assume that the small cell size to which we have
gridded the BEG data is representative of the reservoir within and
around the cell (i.e., the reservoir is homogeneous and isotropic) in
terms of its properties, i.e., thickness, porosity, permeability, etc.
We use these properties to calculate the areal footprint that would
be required of such a reservoir were it to be injected with a
commercial-scale flux of 10 MtCO2/y (or about what three 500 MW
coal-fired power plants emit annually) over 20 y. With this footprint
and the reservoir properties, we next calculate the average rate at
which CO2 can be injected into the reservoir and thus the total num-
ber of injection wells that will be needed. Implicit in this calculation
is the assumption that injection rates at the wells distributed about
this area will not significantly decline over time due to pressure inter-
fere between the wells. We then use the number of wells along with
the storage-site footprint to estimate the total cost of storing the CO2

at such a site, including not only the costs for drilling and injection,
but also site evaluation, monitoring and remediation. Finally, we
divide this total cost by the total CO2 injection rate to arrive at a
cost of storage per tonne CO2 that is normalized to the original grid
cell. This fractional cost of storage is directly based on the reservoir
properties of the grid cell, i.e. it represents the cost of storage for
the fraction of the site that would sit atop the cell. In this way, a stor-
age site can be assembled from a group of adjacent cells within our
gridded data that together have a configuration that meet the capac-
ity requirements of the site within that area of the grid. Furthermore,
the average cost of storing CO2 within the site will be equal to the
average normalized cost of all the cells making up the site, while
the overall cost will be equal to the sum of the total cost for the
cells (i.e. the capacity at the cell times its normalized cost).
As in Eccles et al. (2009), the key modules of our modeling ap-
proach estimate (i) the bulk CO2 storage capacity of deep-saline sand-
stone aquifers, (ii) the maximum rate at which CO2 can be injected
into the aquifers, and (iii) the total cost of carrying out this form of
storage. We have updated these modules in this study to include sev-
eral more realistic assumptions for estimating capacities and costs.

2.2.1. Capacity module
The capacity module, like that in Eccles et al. (2009), is a relatively

simple bulk volume calculation, derived from Bachu et al. (2007). The
capacity for a given cell is represented by

Ai;j ¼ v bi; j; r
� �

ρ Ti; j; Pi; j

� �
ϕi; je ð1Þ

where A is the storage density of CO2 (in tonnes per square kilome-
ter), v is the bulk rock volume, ρ is density of CO2 in tonnes per
cubic kilometer, ϕ is the rock porosity, e is the capacity factor
which, in our case, includes only sweep efficiency, and i,j represent
the geospatial coordinates of the cell. Note that v is a function of net
sand thickness b and grid cell size r (1 km×1 km), and that ρ is a
function of temperature T and pressure P. Since net sand thickness
are given by the BEG data, we use it as an explicit variable in Eq. (1)
rather than folding it into the value for e. Others use a capacity factor
that has been scaled by an assumed net-to-gross ratio of sand and/or
cap rock integrity, such as is done in the USDOE Carbon Atlas
(Department of Energy (DOE), 2010). Consequently such capacity
factors should not be directly compared to ours.

We have improved this part of the model in the calculation of
density and in the use of the capacity factor. For density, we now
use the equations of state for CO2 published by Span and Wagner
(1996) in place of the ideal gas law used in Eccles et al. (2009). The
ideal gas law is sufficient for reservoirs at subsurface depths of
b2000–3000 m, but overestimates CO2 density and thus underesti-
mates storage costs in reservoirs that are deeper. The equations of
state now provide accurate estimates of CO2 density for reservoirs
at all depths.

The other change to this module is the inclusion of the capacity
factor in Eq. (1). We set this factor to 4% based on computer modeling
by Doughty et al. (2001) for a saturated homogenous reservoir in
which CO2 storage has been maximized. This value is near the
upper limit used in NATCARB by the DOE (0.5–5.5%) (2010) but with-
in the range proposed by others (Burruss et al., 2009; Hovorka et al.,
2001). The actual value for capacity factor can be highly site-specific
(Bachu et al., 2007) and, as will be illustrated later, can have a consid-
erable impact on storage capacity estimates (Kopp et al., 2009).
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Eq. (1) is a relatively simple model for estimating bulk CO2 capac-
ity. It does not include: (i) cap rock integrity, for which additional
characterization would be necessary (Bachu et al., 2007)); (ii) pres-
sure constraints, for we assume that the reservoir will not be over-
pressurized, which is a conservative assumption (Bachu et al., 2007;
Kopp et al., 2009)); or (iii) CO2 dissolution in the pore water, a rela-
tively small influence during the initial injection period (Doughty
et al., 2001)). Nonetheless, this type of equation is considered to be
reasonably accurate for regional- to national-scale assessments of
the trapping potential of large reservoirs (Bachu et al., 2007) such
as that being done here.

2.2.2. Injection module
The rate at which CO2 can be injected into the aquifer needs to be

constrained before the cost of storage can be estimated. The annual
injection rate, Qmass, is a function of several geological properties,
such as permeability, layer thickness, and porosity, used to solve the
radial integration of Darcy's law known as the Theis solution, or the
well function (Freeze and Cherry, 1979):

Qmass ¼ ρCO2

−Pf 4πX
gρf Ei uð Þ ð2Þ

This solution is described in detail in Eccles et al. (2009) and
repeated in Section 2 of the Appendix for the interested reader. The
solution yields the maximum injection rate below the threshold pres-
sure at which the reservoir will undergo large-scale fracturing based
on its geologic properties. We limit the threshold pressure, Pf, in
Eq. (2) to 90% of the fracturing pressure to account for a safety margin
in actual injection projects. We also limit Qmass to ≤3500 tonnes/day,
which is the maximum design rate for the well injection pump at the
Sleipner CO2 storage site, an ideal geologic environment for rapidly
injecting CO2 (Eccles et al., 2009). We find that without this limit,
certain combinations of geologic properties can lead our model to
predict injection rates that exceed tens of thousands of tonnes per
day, which is not yet technologically feasible. Our injection rate
model also assumes that the aquifer is relatively open and homoge-
neous, which is a simplifying assumption for regional-scale evalua-
tions such as ours, but one that would require closer examination at
specific sites.

2.2.3. Cost module
The cost module estimates the cost of injection on a per-well basis

in dollars per tonne. In our previous study (Eccles et al., 2009), we
only considered the cost of drilling and operating the injection well.
Here we attempt to include other costs that would be associated
with storage, such as site evaluation and monitoring. Our revised
cost function is

Ci; j ¼
1:1 � am � Cinj

i; j zi; j
� �

þ Cdrill
i;j zi; j

� �
þ Csite

i; j

nwells
i; j

� �

Qmass
i; j

ð4Þ

where Ci,j is the levelized annual cost for injection per tonne of CO2,
am is an amortization factor, Ci,jinj and Ci,j

drill are the costs of injection
equipment and drilling, both of which are a function of depth (z),
Ci,j
site is the sum of other costs associated with carrying out the injec-

tion, ni,jwells is the number of wells needed to achieve the injection
rate, and 1.1 is a scaling factor that accounts for annual operations
and maintenance (O&M) costs( Eccles et al., 2009), based on early
work by Bock (2002).

ni,j
wells is determined by taking the annual flux of CO2 emissions

being transported to the storage site (i.e. the raster cell) for seques-
tration, Qsite, and dividing it by the maximum rate of injection per
injection well, Qmass, determined from Eq. (2). Here we assume Qsite

to be 10 Mt/y, or the CO2 emissions produced annually by roughly
three 500 MW coal-fired power plants; sensitivity tests indicate
varying site size between 1 and 25 Mt/y does not significantly affect
the outcome.

The parameter Ci,jsite includes the costs for site evaluation (e.g. seis-
mic surveys), monitoring and liability, storage-site distribution pipe-
lines, site remediation, and closing costs. We derive these from a
report published by the U.S. Environmental Protection Agency
(2008), which attempts to constrain all of the major costs associated
with geologic sequestration of CO2. The report subdivides these costs
into six major components. One of these is termed injection wells,
which includes the costs of drilling the well (Ci,jdrill, Eq. (4)) and carry-
ing out the injection (Ci,jinj, Eq. (4)). We calculate these specific costs in
our model, and so do not rely on the EPA reported values for them.
Each of the remaining component costs is the sum of a series of
line-item expenses. These expenses differ from one cost component
to the next, and are generally described on a per-unit basis (e.g. $/m
depth for drilling costs). For the most part, the expenses in all the
components can be grouped into five categories: fixed costs (cfixed),
costs per unit area (carea), costs per well (cwell), costs per unit depth
(cdepth), and costs per well per unit depth (cwell,depth). Each component
cost is then arrived at by adding the sum for each expense category
after it is converted into US dollars, which is accomplished where
necessary by multiplying the category by the appropriate raster vari-
able at the site, i.e.:

Ck
i; j ¼ ∑ckfixed þ ∑ckarea

� ��
Q site

.
Ai; j

�
þ ∑ckwell

� �
nwells
i; j

þ ∑ckdepth
� �

zi; j þ ∑ckdepth;wells

� �
nwells
i; j zi; j ð5Þ

Here k represents a specific component cost (e.g., site evaluation)
and Ai,j is the estimated storage capacity at the grid cell location i, j
(for more details, see Appendix Section A2). The second term in
Eq. (5) includes the variable capacity, which was missing from our
original model (Eccles et al., 2009). Capacity is a critical component
in computing the area necessary for a sequestration site and thus
its total cost. Site evaluation and monitoring costs in particular are
highly dependent on the total area necessary for sequestration.

So too is sufficient well spacing, which is necessary to avoid inter-
ference between wells and maintain suitable injection rates over the
lifetime of a project (McCoy and Rubin, 2009). In our analysis, the
minimum spacing between wells is ~1.7 km but averages 6.5 km.

The total site costs (in Eq. (5)) are then:

Csite
i; j ¼

X6
k¼1

Ck
i; j ð6Þ

The dollar costs are adjusted to a 2007 USD basis, for which the PPI
for oil and gas is similar to the preliminary PPI in 2010 (Bureau of
Labor Statistics (BLS), 2010).

While this new version of our cost module now allows for a more
comprehensive estimation of storage costs, we recognize that though
regulations for sequestration have been developed in the United
States (Environmental Protection Agency (EPA), 2010), site configu-
ration, monitoring, and long-term liability practices for CO2 storage
have not yet been established (Benson et al., 2002; Hepple and
Benson, 2005). This implies that many of the expenses compiled by
the EPA are tentative. Furthermore, a number of these expenses will
depend on how the site is evaluated, developed and monitored. As a
base case, we assume there is one initial seismic survey to character-
ize each storage site (i.e. raster cell) and two follow-up monitoring
surveys, and that the site is crossed by a relatively high 10 km of
distribution pipelines, in addition to other minor monitoring infra-
structure expenses (see Appendix Section A3 for more details as
well as for a sensitivity analysis for these assumptions).
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3. Results

The capacity and cost estimates produced by our model for the
rasterized regions in the 15 deep-saline sandstone aquifers are
shown in Fig. 1. As can be seen, some of these regions extend over
most of the aquifer and likely reflect its storage potential, while
other rasterized regions depict only a fraction of the aquifer and
may not be representative of it. Regardless, all of the rasterized re-
gions clarify several important aspects regarding storage capacity/
cost, at least within these aquifers.

The first is that not all areas within the aquifers are suitable for
storing CO2 in a supercritical state. The grey portions of the rasterized
regions are locations where pressures and/or temperatures within
the aquifers do not appear to be sufficient to keep the CO2 supercrit-
ical. Generally this occurs where the aquifer is too shallow.

Secondly, locations within the rasterized regions that can support
supercritical CO2 storage (colored regions, Fig. 1) have estimated
capacities and costs that are not constant. This holds not only from
one aquifer to the next, but also within aquifers. For example, storage
capacity throughout much of the rasterized region in the Frio aquifer
(#7, Fig. 1a) is high, approaching or exceeding 8 Mt CO2 per grid cell.
For the Oriskany aquifer (#13, Fig. 1a), however, the storage capacity
per grid cell is not only an order of magnitude less, but also much
more variable, with estimates ranging between ~100 kt–1 Mt CO2

per grid cell.
A third point is that the variability in storage capacity and cost

is not well represented by simple averages. Some aquifers like the
Frio and Mt. Simon are dominated by high capacities and low costs,
while others exhibit a much more complex mix of capacities and
costs, such as in the Oriskany and St. Peter aquifers (#10 and # 13,
Fig. 1a, respectively). This is even clearer in Fig. 2 and Table 2,
which show frequency plots of the estimated storage capacities and
costs for the aggregate and selected aquifers as well as a list of sum-
mary statistics for all aquifers. These plots (particularly the aggregate
data) are non-Gaussian and are largely skewed toward a higher fre-
quency of either lower capacity or lower cost cells with long tails
that extend out one or more orders of magnitude. There is a consider-
able discrepancy between these plots and the average estimated stor-
age capacity and cost for the rasterized regions in the aquifers (see
Table 2). The average estimated storage capacity within all the rasters
is a relatively high ~500,000 tonnes/km2 (median 133,000 tonnes/
km2) while the average estimated cost is an extremely high $106/
tonne (median $15.50/tonne). This is the result of the long tails on
Fig. 2. Distribution of quantity and cost in analyzed areas. A PMF of quantity (a) and cost (b) c
of relatively high (Frio/Mt Simon) and low (Oriskany/Fox Hills) quality).
the frequency plots (Fig. 2, Table 2; see Appendix for Fig. 2 with all
basins plotted) biasing the averages upwards and giving the impres-
sion that the aquifers have much higher capacities and costs than are
evident in the frequency plots, a point we return to later.

Finally, the distributions of estimated capacity and cost in Fig. 1
show a general correspondence with one another. Where the storage
estimates are high, such as in the Frio and Mt. Simon rasterized
regions, estimated costs tend to be low. And where the storage esti-
mates are on the lower end, such as in rasterized regions within the
Oriskany, Lyons and Fox Hills/Lower Hell Creek (#4, Fig. 1) forma-
tions, estimated costs tend to be high.

This inverse relationship, however, is not as strong as it might
appear from Fig. 1. Fig. 3 is a scatter plot of storage capacity vs. cost
for every grid cell in Fig. 1 where CO2 could be stored in supercritical
form (i.e., all the colored cells). The plot shows a clear but very broad
trend of lower estimated storage costs for grid cells with higher esti-
mated storage capacity. Note that the plot axes are in log scale, so
even though there is a trend, the capacity-cost relationship is still
highly variable and appears to be heteroskedastic. For example, at
grid cells where storage would approach $1000/tonne, capacity esti-
mates span b104–>106 t/km2, while lower costs require cells that
could store at least 105 t/km2. Keep in mind that storage sites
would consist of multiple grid cells and that sites in low-capacity
regions would consist of many more grid cells than those in high-
capacity regions, so the density of low-capacity grid cells in this
plot is exaggerated relative to high-capacity grid cells. However,
the plot does indicate that high storage capacity per unit area is a
necessary but not sufficient condition for low cost.

This considerable variability is because estimated cost depends
on more than just storage volume. As Eqs. (1) and (2) indicate, other
key geologic variables affecting cost are the permeability and depth
of the aquifer. Nonetheless, storage volume, and specifically sediment
thickness at a site appears to be the most important influence on cost.
A linear regression of log-transformed capacity on log-transformed
injection layer thickness yields a relationship with an R2 of 0.98
(R2=0.71–0.99 for individual formations), while a linear regression
of log-transformed cost on log-transformed injection layer thickness
yields a relationship with an R2 of 0.62 (from R2=0.11–0.99 for indi-
vidual formations). This leads us to conclude that layer thickness is a
reasonably good site-screening criterion because of the intrinsic link
between thickness, high capacity, and low cost.

This link also has an important impact on the marginal abatement
cost curves we construct from these estimates. Four MACCs are
ells shows highly skewed distributions for aggregate and selected basins (representative

image of Fig.�2


Table 2
Summary statistics for capacity and cost for analyzed basins.

Capacity (tonnes/km2) Cost (USD/tonne)

Mean Median Min Max Mean Median Min Max

Mt. Simon 1,548,029 1,496,750 46 2,932,900 $3.57 $2.13 $1.79 $1000
Frio 2,327,130 1,924,250 66 8,067,400 $1.12 $0.57 $0.44 $1000
Cape Fear 105,068 49,253 17,678 523,050 $8.28 $8.53 $0.99 $24.11
Potomac 1,024,215 951,210 363,910 2,024,200 $0.75 $0.71 $0.57 $1.24
Oriskany 29,795 23,573 0 159,540 $180.87 $32.39 $4.88 $1000
Lyons 95,332 86,246 0 406,890 $303.94 $267.61 $16.59 $1000
Paluxy 173,160 176,955 9094 518,020 $11.16 $3.31 $1.00 $123.90
St. Peter 149,463 153,425 0 321,090 $31.37 $5.13 $2.70 $1000
Granite Wash 383,129 241,760 0 2,729,200 $99.92 $51.30 $1.89 $1000
Fox Hills 180,777 201,030 5 391,380 $90.39 $24.40 $13.21 $1000
Woodbine 312,126 275,980 5,936 833,200 $4.83 $2.23 $0.80 $100.49
Morrison 488,668 483,095 212,020 734,580 $3.71 $3.40 $2.19 $6.70
Repetto 611,236 133,060 0 8,067,400 $104.74 $15.49 $0.44 $1000
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shown in Fig. 4: one for the rasterized region in the Mt. Simon aquifer
(#12, Fig. 1a), another for the region in the Frio aquifer, an aggregate
MACC for the remaining basins, and an aggregate MACC for all of the
rasterized regions in Fig. 1. Each of these MACCs is in fact depicted as
a band of possible estimated capacity-cost curves. This is due to the
uncertainty over the distribution of sandy layers within the aquifers.
As noted previously, we address this uncertainty by representing
the sandy layers as a single unit with a thickness equal to the net
sand thickness of the reservoir based on the BEG data. The lower
and upper bounds to the MACCs (i.e. the left and ride sides of the
bands) are determined by solving for storage capacity and cost
when this unit is placed at the bottom and then top of the aquifer, re-
spectively. As the Mt. Simon formation is essentially all sandstone,
there is no difference between the two and it is plotted as a line.
The difference for the Frio and the total aggregate, however, is
considerable.

All four MACCs reflect the non-normal distribution of storage
capacities and costs within the rasterized regions. In fact, the MACCs
reveal that the bulk of available storage capacity is relatively inexpen-
sive (see Fig. 2). For our base-case scenario, the minimum cost
for storage is~$0.50/t CO2; 190 out of a total of 302 Gt of storage
potential are available for less than $1/t, with nearly 260 Gt at or
below $3/t and almost 275 Gt at or below $5/t. Note that all of these
Fig. 3. Cost vs. quantity. A log–log plot of cost vs. quantity shows an inverse power law
relationship, with considerable variation to the right of the trend line. The distribution
exhibits heteroskedasticity but the variance and skew are both high for all values of the
variables. Note that high storage capacity does not guarantee low costs. Only 1 in ten
data points (~50,000 total) are plotted.
costs are considerably lower than the simple average estimated cost
of storage mentioned previously, which is>$100/tonne, and even
far below the median, which is $15.50/tonne.

In fact given the shape of the MACCs, a much more meaningful ex-
pression of the average is the cumulative mean cost of storage as a
function of cumulative capacity x (i.e. the horizontal axis of Fig. 4)

∫
x

0

MACC xð Þdx

x
ð7Þ

This function for the aggregate MACC, which represents the aver-
age cost of storage at all the sites (i.e. cells) that sum up to a given
cumulative capacity, is also plotted in Fig. 4. The function shows
that 260 Gt or 87% of the storage analyzed could potentially be
utilized for an mean cumulative cost ofb$1/t CO2, and that all of the
storage could be utilized for a mean cumulative cost ofb$5/t CO2

(Fig. 4).
The two largest contributors to the aggregate MACC are the Frio

and Mt. Simon aquifers. The Frio represents 62% of all the storage
evaluated, while the Mt. Simon constitutes another 21%. This is in
Fig. 4. Aggregate supply function. The curves show the marginal cost of storage within
a range bounded by concentrations of sand at the top and bottom of formations for all
15 analyzed formations together, the Frio, Mt. Simon (top and bottom are the same),
and the remaining 13 formations. The average cost of abatement for all basins for a
layer at the top of a formation (corresponding to the upper bound of the total storage
estimate) is also shown. Cost is on a 2007 USD basis and is truncated at $100 per tonne.

image of Fig.�3
image of Fig.�4
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part because a number of the other aquifers are underrepresented by
the regions we were able to rasterize, including the Glen Canyon,
Morrison, and Cape Fear (#2, #3 and #15, Fig. 1a). However, the
Frio and Mt. Simon aquifers also overshadow the other aquifers
because they have considerable storage capacity at relatively low
cost that is far in excess of their surface area. The Frio, for example,
makes up only 14% of all the rasterized areas analyzed, while Mt.
Simon makes up only 5% of the area analyzed, and would dominate
the aggregate MACC if the Frio were removed.

Given that they constitute some 83% of the aggregate MACC, it
follows that the Frio and the Mt. Simon aquifers have distributions
in which the vast majority of the estimated storage capacity is avail-
able at a relatively low estimated cost. In the case of the Frio aquifer,
up to 184 Gt of CO2 storage (or 61% of the storage analyzed) has an
estimated cost ofb$1 for storage only, while in the Mt. Simon aquifer,
up to 33 Gt of CO2 storage (11% of the storage analyzed) is estimated
to be available forb$2/tonne. What is significant, however, is that the
MACCs for many of the other individual rasters share this same type
of distribution (Fig. 2), indicating that while absolute costs may vary
between the aquifers, relative costs within the aquifers are similarly
distributed, with most available storage clustering near the low end
for cost.

This common shape to the MACCs holds even when variables in
our model that affect the absolute values of our capacity and cost
estimates are changed. Among the least constrained of these variables
is the capacity factor. Research by van der Meer et al. (van der Meer
and Egberts, 2008; van der Meer and van Wees, 2006), Birkholzer
and et al. (Birkholzer and Zhou, 2009; Birkholzer et al., 2009) and
Nicot (2008), indicates that the effective capacity factor is reduced if
the pressure within the reservoir needs to be managed as it fills
with CO2. While our injection module includes pressure constraints,
our capacity module does not, so our model may be overestimating
storage capacity and in turn underestimating storage costs. We eval-
uated what impact this might have on the MACCs by reducing the
capacity factor eight fold to 0.5% and then repeating our analysis. In
Fig. 5. Distribution of cost components. A box-and-whisker plot of the total distribution of
“base model” referring to the costs in Eccles et al. (2009) for comparison and the remaining
cells with storage potential (roughly 500,000) over several orders of magnitude. The lines a
them individually.
the resulting aggregate MACC, storage costs roughly doubled but
the shape of the supply curve remained the same.

We also explored to what degree the shape of our MACC is influ-
enced by the various cost components for the storage site, such as
site evaluation and monitoring. Fig. 5 presents the cost distributions
for each of these components as estimated from all grid cells in the
rasterized regions where supercritical storage of CO2 would be viable.
The distributions are displayed as a box-and-whisker plot. In this type
of plot, the interquartile range is shown within the boxed region (the
25th to 75th percentiles) with a line for the median, and the whiskers
are plotted at 1.5 times this interquartile range beyond the boxes.
Outliers are plotted outside the whiskers. In the case of the rasterized
regions, all outliers are above the high-cost whiskers and are so nu-
merous that the dots form lines (Fig. 5). This is a direct reflection of
the long tails to the total cost distributions shown Fig. 2.

There is considerable variation in the contributions of the different
cost components to the total cost, but the estimates summarized in
the whisker plot indicate that the injection wells are the most signif-
icant cost component in our analysis. For example, the ratio of the
median injection cost to the median total cost is 2:3. The next two
important costs are for site characterization and monitoring; the ra-
tios of these to the median total cost are 1:10 and 1:6, respectively,
with the three remaining cost components constituting just 1:12 of
the median total cost. Note that in our model, injection well costs
(i.e., Ci,jdrill and Ci,j

inj in Eq. (4)), which dominate the total estimated
cost for storage, are a function of site geology. Site geology is also
the fundamental control on the shape of our MACC. Thus we conclude
that varying the component costs will affect the absolute estimates
for storage costs produced by our model, but not significantly alter
the distribution of costs represented in our MACC.

4. Discussion

Our storage-based MACCs of select regions within a number of
deep-saline sandstone aquifers reveal that, at least in the regions
costs and the distribution of cost components by category (labeled on the x-axis, with
categories drawn from the EPA cost assessment) shows the variation in costs of all valid
bove the whiskers are outliers, which are numerous enough to be unable to distinguish

image of Fig.�5
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we have analyzed, areas with high estimated storage capacity also
tend to have low estimated storage cost. This connection persists
even when variables that have a strong influence on the cost esti-
mates produced by our model are changed substantially.

Two other factors could affect the shape of our MACCs, one of
which is the accuracy of our model in predicting storage capacity
and injection rates. This accuracy is discussed at length in Eccles et
al. (2009) where among other things we found that our predictions
of injection rates for geologic conditions approximate those at current
CO2 storage demonstration projects (i.e. Sleipner West, Frio,
Nagaoka) fall within the injection rate limits reported at these pro-
jects. We also do not directly consider the option of pumping brine
water to enhance injectivity, although this may only be necessary if
our assumption that wells have sufficient drainage radius is incorrect
and would simply add to the base cost of injection. We also discussed,
as we do in this paper, how our capacity module is similar to that
developed by others. This module is also similar to that used in NAT-
CARB for estimating the storage capacity of the same deep-saline
sandstone reservoirs analyzed here. A direct comparison of the esti-
mates is not appropriate given differences between the studies in
the spatial extent to which the aquifers were evaluated. But our stor-
age estimates for these reservoirs are in line with those reported by
NATCARB (see Table 3), which likewise shows vast storage potential
in the Mt Simon and along the Texas Gulf Coast, and similar to
other studies (Bachu, 2003; Department of Energy (DOE), 2010).
These similarities plus the favorable comparison of our injection
rate estimates with data from demonstration projects suggests the
shape of the MACCs in Fig. 4 is unlikely to result from potential prob-
lems with our model.

Another factor that could affect the shape of the MACCs is the
inclusion of additional aquifer areas and even other aquifers in our
analysis. For example, the BEG dataset underrepresents the Mt.
Simon formation, which could rival the Frio in storage potential
(Barnes et al., 2009). And because our current model is for sandstone
aquifers, we do not address the storage potential of deep-saline car-
bonate aquifers, which calculations by the BEG (2000) and NATCARB
(Department of Energy (DOE), 2010) suggest could have storage
capacities approaching those of the Mt. Simon and Frio aquifers.

Inclusion of more aquifer regions would raise the absolute storage
capacity in our MACC, but it is unclear whether additional data on
these or other aquifers would also significantly alter the shape of
the MACC. We find no significant correlation between the consider-
able variation in density of the BEG data and our estimates of storage
capacity and cost. This suggests that while increased data density is
likely to refine our capacity estimates for the aquifers, it will not nec-
essarily change the weighting of the MACC toward high-capacity/
Table 3
Comparison of capacity estimates with NATCARB.

Map
index

Formation Storage (billion metric tons)

Total estimate NATCA

1 Repetto 0.16 1
2 Glen Canyon 0
3 Morrison 0.73
4 Fox Hills 5.7
5 Lyons 5.5
6 Granite Wash 9.4
7 Frio 187 17
8 Woodbine 10.8 5
9 Paluxy 1.7 5
10 St Peter 7.9 0.6
11 Pottsville 0 1.1
12 Mt Simon 64 17
13 Oriskany 4.4 0.7
14 Cape Fear 1.2 12.6
15 Potomac 3.8 2
16 Tuscaloosa 5
low-cost storage. Furthermore, inclusion of more low-capacity/high-
cost regions in our analysis (those represented by the right, upward
rising side of the MACC) is not likely to add enough storage capacity
to diminish the extent of high-capacity/low-cost regions already
included in the MACC (i.e. shift the curve left). And the inclusion of
more high-capacity/low-cost regions (the flat, left side of the MACC)
will simply enhance the current shape of the MACC by increasing
the cumulative capacity of low-cost storage areas (i.e. shift the
curve right).

Where additional and/or improved data could have a significant
impact on our results, however, is in the spatial distribution of storage
capacity shown in Fig. 1. If these data were to reveal different capacity
patterns within the aquifers due to for example new formations and/
or changes in porosity, the locations of the high-quality, low-cost
regions within the aquifers could shift with respect to the locations
of major CO2 point sources in the U.S. This in turn could have a signif-
icant impact on CCS transport costs if the revised data indicates these
sources are located farther away from viable storage sites (McCoy and
Rubin, 2009; Gresham et al. 2010), reinforcing conclusions that the
acquisition of more accurate geological data is a valuable investment
(Friedmann et al., 2006).

An underlying cause for the shape of the MACC appears to be that
cost and capacity are inversely related through the net sand thickness
of the reservoir. Thick reservoirs have high bulk volume and can
physically store the most CO2, so they will make up the majority of
storage in a sink-based MACC. Thick reservoirs will also be relatively
low cost because the major cost components depend on injection rate
(Qmass through Qsite and n in Eq. (5)), which increases with net sand
thickness, and they depend on the area over which the plume of
injected CO2 will spread away from the injection well (Ai,j in
Eq. (5)), which decreases with net sand thickness. It is certainly
possible that some reservoir regions may be low-cost because of
high permeability. However, unless these regions are also thick,
their bulk volume will be low and their affect on the MACC will not
be significant. For the same reasons, high cost, low-capacity regions
will also not have a significant affect on the MACC. Consequently,
we believe that this connection between relatively high-capacity
and low-cost storage is likely to be one of our most robust results, a
promising conclusion for proponents of CCS if correct.

As stated previously, however, CCS will only see widespread
deployment if it is cost effective, and probably the most tentative
estimates produced by our model are those relating to costs. Our es-
timates are almost certainly not an upper bound on storage costs.
As previously stated, site configuration, monitoring, and long-term
liability practices have not yet been established (Benson et al.,
2002; Hepple and Benson, 2005), and we do not include other
Notes

RB low NATCARB high

35 From plot
Evaluated by state; not listed
Evaluated by state; not listed
Our spatial extent not listed
Evaluated by state; not listed
Evaluated by state; not listed

235
70 8 and 9 listed as combined
70
7.8
15
68
2.9
60 Formation may not match
25
75
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potentially significant expenses such as compensating property
owners (Gresham et al., 2010). Other factors beyond the scope of
this study can also affect costs, such as obtaining legal rights to the
pore space needed for storage, estimates for which range between
$0.4 and $11/tCO2 (Duncan et al., 2009; Gresham et al., 2010). None-
theless, our assumptions and modeling yield average storage costs
that are close to those arrived at by Middleton and Bielicki (2009)
using a similar injection model for a fixed set of geological properties,
and our ranges for storage costs evaluating a wider set of properties
are similar to those of Wildenborg et al. (2004). In fact, we are able
to find previous cost estimates for CO2 storage that range over
much of our MACC (AL-JUAIED and Whitmore, 2009; Allinson et al.,
2003; BCG, 2008; Bock, 2002; Hendriks et al., 2004; McKinsey Climate
Change Initiative, 2008). This is because nearly all of the costs
reported, from theb$1 tonne/y in Bock (2002) to the>$10 tonne/y
in Al-juaied andWhitmore (2009), are reasonable given some geolog-
ical parameters. Therefore, the problem lies not necessarily with the
methodology for calculating these costs but rather the manner in
which they are reported, which to date has been in terms of simple
mean costs or even costs derived from reservoir properties at a single
wellsite. For example, in our previous paper (Eccles et al., 2009), we
did not account for the spatial distribution of the aquifer properties
we analyzed and arrived at an “average” storage cost of~$3/tonne, a
figure that was in line with others’ estimates. Here we do account
for the spatial distribution of the reservoir properties and when we
calculate a simple average cost as before, we arrive at>$100/tonne.
Only when the capacities and costs are considered together in a spa-
tial framework does it become clear that low-cost regions are also
high-capacity regions, meaning that much of the storage capacity of
the aquifers we evaluated is estimated to be low cost. And because
the capacity and cost distributions are not uniform, simple averages
are not only inaccurate, they can lead to an overestimate in the cost
of storage in aquifers with considerable geologic heterogeneity.

Simple averages or single estimates of storage capacity and cost
are also misleading in terms of where to sequester CO2 in aquifers.
Many of the rasterized regions in Fig. 1 have sub-regions of high-
capacity/low-cost storage that occur in different parts of an aquifer.
Linking these higher quality storage sites to CO2 point sources via
pipelines could require different transport routes and thus transport
distances to the aquifers. To date, studies using transport modeling
have done the best job integrating the cost of transportation and stor-
age. Middleton and Bielicki(2009), McCoy and Rubin (2008), and
Wildenborg et al. (2004) among others have developed transport
optimization algorithms that can take into account geologic and eco-
nomic differences between storage sites. The disclosure of costs in
these studies, however, is generally in the form of summary statistics
(e.g. mean and standard deviation (Middleton and Bielicki, 2009)),
which as we have discussed can under-represent the true variation
in storage costs, and assumes them to be normally distributed,
which is probably incorrect. Other studies give no hint that spatial
or geological variability is even considered. Supply curves (represent-
ing integrated costs of storage and transport, compiled by a different
method than ours) for North America and China by Dooley et al.
(2004) and Dahowski et al. (2009), respectively, rely on a method
for characterizing cost in all saline aquifers based on a single value
for injection rate (computing injection cost only) and never disentan-
gle the cost of storage in saline aquifers from transport except for
two examples (with the same cost of storage) shown graphically in
a subsequent report (Dooley et al., 2008).

If the cost of storage varies on the same scale as the cost of trans-
port reported in literature, which our analysis supports, the optimal
transport configuration must take into account variations in storage
capacity (Gresham et al., 2010; McCoy and Rubin, 2008; Middleton
and Bielicki, 2009). Without differentiating the cost at the end of
the transport stage, the transport optimization algorithm will not
map cost-efficient or possibly even practical routes for transporting
CO2 from sources to sinks. The algorithm will also not calculate the
integrated cost of transport and storage correctly. Variability in
storage costs is therefore important in determining both the overall
viability of the integrated CCS system as well as the ultimate configu-
ration of the transport-storage components of the system.

A few regions with relatively high-capacity, low-cost storage po-
tential dominate the bulk of the MACC in our analysis. These regions
constitute some 83% of the storage potential, but only 19% of the
total surface area of the aquifer regions we analyzed. The remainder
tends to have lower storage capacity at higher estimated cost. Our
analysis is limited, however, and should not be used to exclude re-
gions of the country as not having good storage potential. There are
undoubtedly sites within many of these lower quality aquifers that
when transportation expenses are included could still prove to be
cost-effective storage sites for certain CO2 point sources.

Our analysis does suggest that not all CO2 sources will have cheap
transport access to high-quality storage sites. If this is the case, the
configuration of the national transport and storage system might
look quite different than a set of shortest pathways from CO2 sources
to a relatively homogenous group of saline aquifers such as that
depicted by Dooley et al. (2004). In fact, with the incorporation of
more and better data, our storage-based maps and MACCs would
have greater value as a component of the type of comprehensive
transport modeling conducted by Dooley et al. (2004). Integrated
assessments of the entire CCS system will be more accurate when
the vast heterogeneity in geosequestration potential in saline aquifers
is taken into account. This improvement will better inform policy-
makers and industry on the true potential, costs and configuration
of CCS as an emissions abatement option.
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