

Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis

Noah Fierer,^{1,2} Benjamin P. Colman,³ Joshua P. Schimel,³ and Robert B. Jackson^{4,5}

Received 25 October 2005; revised 16 April 2006; accepted 8 June 2006; published 28 September 2006.

[1] The production of CO_2 by soil microorganisms is an important component of the global carbon cycle, and its temperature sensitivity is poorly constrained in global models. To improve our understanding of the factors controlling the temperature dependence of soil microbial respiration, we analyzed the temperature sensitivity of labile soil organic carbon decomposition for 77 soils collected from a wide array of ecosystem types. Across all of the soils, the average Q_{10} value (the factor by which decomposition rates increase for a 10°C increase in temperature) was 3.0, but the range in Q_{10} values was substantial (2.2 to 4.6). A large percentage (45%) of the variation in Q_{10} values could be explained by the relative rate of microbial respiration per unit organic C, an analog for C quality. This result provides support for the "carbon quality-temperature" hypothesis that directly links the temperature dependence of microbial decomposition and the biochemical recalcitrance of soil organic carbon. A smaller percentage (17%) of the variability in Q_{10} values could be explained by the mean monthly temperature at the time of sampling, suggesting that microbial communities may adapt to the antecedent temperature regime. By showing that the Q_{10} of microbial respiration in soil is largely predictable under standardized incubation conditions, this work increases our understanding of the temperature sensitivity of labile soil organic carbon stores.

Citation: Fierer, N., B. P. Colman, J. P. Schimel, and R. B. Jackson (2006), Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis, *Global Biogeochem. Cycles*, *20*, GB3026, doi:10.1029/2005GB002644.

1. Introduction

[2] Soil is the largest global pool of terrestrial C and the soil organic C pool (approximately 2400 Pg of C) is at least three times larger than the size of the atmospheric carbon pool [*Batjes*, 1996; *Jobbágy and Jackson*, 2000]. The conversion of soil organic C to CO₂ by microorganisms is an important component of the global carbon cycle. We know that the rate of microbial CO₂ production from soil strongly depends on soil temperature [*Kätterer et al.*, 1998; *Kirschbaum*, 1995; *Lloyd and Taylor*, 1994; *Waksman and Gerretsen*, 1931], however there is no consensus on the specific relationship. Because rates of soil microbial respiration are likely to be more sensitive to temperature than rates of net primary production [*Raich and Schlesinger*, 1992; *Schimel et al.*, 1994], the predicted increase in global

Copyright 2006 by the American Geophysical Union. 0886-6236/06/2005GB002644\$12.00

temperatures could cause a net transfer of carbon from soils to the atmosphere. Without an improved, mechanistic perspective on the relationship between temperature and microbial respiration, we will not be able to accurately predict the impacts of climate change on global C dynamics [Intergovernmental Panel on Climate Change, 1996; Kirschbaum, 2000].

[3] The sensitivity of microbial respiration to temperature is commonly described by Q_{10} , the factor by which CO_2 production increases for a 10°C increase in temperature. While Q_{10} can be used to describe the temperature sensitivity of any chemical process, in this study Q₁₀ refers specifically to the temperature sensitivity of microbial CO₂ production. The range of Q10 values reported for different soils and ecosystems (<2 to >6) is considerable [Holland et al., 2000; Kätterer et al., 1998; Kirschbaum, 1995]. Nonetheless, terrestrial carbon models such as Roth-C and CENTURY generally assume that the respiration-temperature relationship is constant, regardless of the characteristics of the ecosystem or soil in question [Burke et al., 2003; Melillo et al., 1995]. Since small differences in the assumed Q_{10} value can dramatically alter estimates of net soil carbon storage, our inability to accurately predict the temperature sensitivity of microbial respiration is a major source of uncertainty in terrestrial carbon models [Holland et al., 2000; Jones et al., 2003; Lenton and Huntingford, 2003].

[4] One reason for our poor understanding of the temperature dependency of soil CO_2 production is that few studies

¹Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado, USA.

²Also at Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado, USA.

³Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA.

⁴Department of Biology, Duke University, Durham, North Carolina, USA.

⁵Also at Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina, USA.

have quantitatively compared Q₁₀ values across soil and ecosystem types or tried to evaluate the factors that control Q_{10} . Even the most comprehensive surveys [Holland et al., 2000; Howard and Howard, 1993; Ross and Cairns, 1978] have directly measured Q_{10} values on fewer than 20 unique soil samples, and no specific mechanisms have been proposed to explain the variability in Q_{10} values. A metaanalysis of Q₁₀ values from published studies is of limited utility because the variability in the methods of Q₁₀ measurement makes it difficult to compare Q_{10} values across studies in a quantitative manner [Burke et al., 2003; Leifeld and Fuhrer, 2005; Reichstein et al., 2000]. For this study, we collected 77 distinct soils from across the United States and measured the short-term temperature sensitivity of microbial respiration of labile soil organic carbon pools under controlled laboratory conditions. We measured a suite of accompanying soil physical, chemical, and biological characteristics in order to examine relationships between these characteristics and the measured Q_{10} values.

[5] We hypothesize that the temperature sensitivity of microbial CO₂ production varies predictably across soil types. More specifically, we hypothesize that the Q_{10} measured at any given point in time will be inversely related to the quality of soil organic C being consumed by microorganisms. This "C quality-temperature" hypothesis, first proposed by Bosatta and Agren [1999], is based on the fundamental chemical principle that the temperature sensitivity of a reaction is directly proportional to the net activation energy, as formulated in the Arrhenius equation [Strver, 1995]. Since the enzymatic reactions required to metabolize simple organic C substrates are almost certain to have a lower net activation energy than the reactions required to metabolize structurally complex, low-quality, C substrates [Agren and Bosatta, 2002; Bosatta and Agren, 1999], we would expect an inverse relationship between soil organic C quality and the Q_{10} of microbial CO₂ production. Fierer et al. [2005] found strong support for this hypothesis in a study examining the temperature sensitivities of plant litter decomposition and the decomposition of individual C compounds. Other studies suggest that the "C qualitytemperature" hypothesis may also apply to the decomposition of soil organic C pools [Fierer et al., 2003a; Knorr et al., 2005; Leifeld and Fuhrer, 2005; Mikan et al., 2002]. To date, however, it is not clear that the "C quality-temperature" hypothesis can be used to predict the Q_{10} of microbial respiration across a wide range of ecosystems. If it can, we are likely to improve our ability to predict climate change impacts on soil C pools.

2. Methods

2.1. Soil Collection and Processing

[6] A total of 77 unique soils, representing a diverse array of soil and site characteristics, were collected from throughout the United States (Table 1). We restricted our sampling to soils that are unsaturated for most of the year. Soils were collected near the time of peak plant biomass at each site. The upper 5 cm of mineral soil was collected from 5-10 locations within each site and composited into a single bulk sample. All samples were shipped at field moisture content

to the University of California, Santa Barbara, within a few days of collection. During shipping, soils were exposed to ambient temperatures. Immediately after arrival in the laboratory, soils were sieved to 4 mm, visible root fragments were removed, and soils were thoroughly homogenized.

[7] Prior to any analyses, all soils were adjusted to 35% of water-holding capacity, by drying at 20°C or wetting with deionized water, and equilibrated at 20°C for 10 days. Since the soils varied significantly in terms of their soil moisture contents at the time of collection, we adjusted the samples to a similar percentage of water holding capacity in order to accurately compare microbial processes across sites. Soils at the same percentage of water holding capacity should have similar soil water potentials [*Gulledge and Schimel*, 1998]. Gravimetric soil moisture contents were determined by drying soils at 120°C for 48 hours, with 100% of water holding capacity measured as the gravimetric water content of soil saturated and allowed to drain over 2 hours in a filter funnel.

2.2. Site Characterization

[8] Climate information for each site was estimated from historical average station data (1971-2000) provided by the National Oceanic and Atmospheric Administration, USA. Average annual soil moisture deficit (in mm H₂O) was estimated as the sum of the differences between mean monthly potential evapotranspiration (PET) and mean monthly precipitation. PET was estimated using Thornthwaite's method with a correction for latitude [*Thornthwaite*, 1948]. Ecosystem classification for each site follows *Bailey et al.* [1994].

2.3. Soil Analyses

[9] Total soil organic carbon and nitrogen contents were measured on a CE Elantech Model NC2100 elemental analyzer (ThermoQuest Italia, Milan, Italy) with combustion at 625°C and 900°C, respectively. Soil pH was measured after shaking a soil/water (1:1 w/v) suspension for 30 min. Particle size analyses were conducted at the Division of Agriculture and Natural Resources Analytical Laboratory, University of California Cooperative Extension (Davis, California) using a standard hydrometer method. Soil microbial biomass was estimated used the substrate induced respiration method described by *Fierer et al.* [2003b].

[10] Net N mineralization and microbial CO₂ production rates were measured on triplicate subsamples (4 g wet weight) over the course of a 50-day incubation at 20°C. After adjustment to 35% of water holding capacity and equilibration (see above), a series of 6–10 static incubations per sample were used to measure the average rate of soil CO₂ production for the 50-day incubation period, using the method described by *Fierer et al.* [2005]. Triplicate subsamples were harvested initially and at 50 days for the determination of K₂SO₄-extractable NH⁴₄ and NO³₃. Samples were extracted for 1 hour with 0.5 M K₂SO₄ and extract NH⁴₄ and NO³₃ concentrations were measured on a Lachat autoanalyzer (Milwaukee, Wisconsin) using Lachat methods 31-107-06-5-A and 12-107-04-1-B, respectively. Net N mineralization was

Table	1. Site Information and Selected	1 Characte	sristics of th	ne Soils Use	ed in This Study ^a									
Soil Code	Location	Latitude, °N	Longitude, °W	Elevation, m	Dominant Plant Species	MAT, °C	°C °C	MAP, mm	% Organic C	Texture Class	Hq	В	Q_{10}	
BB1 PD2	Bear Brook, ME, USA	44.87 44.87	68.10 68.10	400	Picea rubens	6.1 6.1	18	1200	12.8 5 7	sandy loam	4.3	0.4	2.7	
700	DCal DIOUN, MILL, OCA		01.00	00+	t ugas granupotus, acer ruor ant, acer succinar ant, Betula alleghaniensis	1.0	10	0071	7.0	sanuy noan) F	r. >	0 1	
BFI	Bousson Forest, PA USA	41.58	80.05	390	Acer saccharum, Fagus grandifolia, Prunus serotina	7.8	18	1000	6.4	loam	4.1	1.1	3.0	
BF2	Bousson Forest, PA USA	41.58	80.05	390	Acer saccharum, Fagus grandifolia, Prume comina	7.8	18	1000	9.5	loam	3.6	0.6	3.5	
BPI	Badlands National Park, SD	43.75	102.38	1000	Agropyron smithii, Schizachyrium scoparium	6.6	18	450	3.1	silt loam	7.5	3.0	2.8	
BZI	Bonanza Creek LTER, AK USA	64.80	148.25	300	Picea glauca	-2.9	11	260	б	silt loam	5.1	1.8	2.6	
BZ2	Bonanza Creek LTER, AK USA	64.80	148.25	300	Picea glauca	-2.9	11	260	εΩ	silt loam	5.2	2.8	2.6	
BZ3	Bonanza Creek LTER, AK USA	64.80	148.25	300	Picea glauca	-2.9	1	260	3.7	silt loam	ν. 4. 6	n (4 0	
CAI	Cedar Mtn., AZ USA Cedar Mtn. A7 HSA	20.05 36.05	111.77	2003	Finus edulis Luninome monocrana	10.3	0 Y	400	1./	silt loam	ر./ 80%	- 'i 0	0.7 7 1	
CCI	Cedar Creek LTER, MN USA	45.40	93.20	110	Carex muhlenbergii, Andropogon gerardii,	5.8	18	720	1.9	sand	6.1	2.0	2.6	
					Poa pratensis, Schizachyrium scoparium									
CF1 CF2	Catskills, NY USA Catskills, NY USA	42.17 41.93	74.26 74.35	800 800	Acer saccharum, Fagus grandifolia, Acer rubrum Fagus grandifolia, Betula alleghaniensis,	5.3 5.3	$16 \\ 16$	$1300 \\ 1300$	2.6 4.1	loam sandy loam	3.9 3.6	0.6 0.6	3.2 3.1	
					Acer saccharum									
CF3 CI 1	Cathoun Evnerimental Forest	42.12 34.62	74.10 81.67	800 150	Tsuga canadensis Onevens soon Carva soon 4 cor militum	5.3 15.0	16 22	1300	4.0 6.4	silt loam sandy loam	3.6	۰.4 0.4	3.5 7.6	
CEI	SC USA	70.40	10.10	001	Quercus spp.; Curja spp.; Acer ruorum	C.C.I	1	0071	C:4	sanuy roam		0.0	0.1	
CL2	Calhoun Experimental Forest, SC USA	34.62	81.67	150	Bromus spp.	15.9	22	1250	2.3	sandy loam	5.6	1.9	3.0	
CL3	Calhoun Experimental Forest, SC USA	34.62	81.67	150	Pinus taeda	15.9	22	1250	1.2	loamy sand	4.9	4.0	2.7	
CL4	Calhoun Experimental Forest, SC USA	34.62	81.67	150	Hordeum sp.	15.9	22	1250	1.7	sandy loam	5.0	1.6	3.0	
CMI	Clymer Meadow Preserve, TX 11SA	33.30	96.23	200	Andropogon gerardii, Sorghastrum nutans, Schirachwinn sconarium	18.5	25	850	б	silty clay	7.9	1.0	2.7	
C01	Fort Collins, CO USA	40.40	105.70	3800	Geum rossii, Primula spp., Silene acaulis, Poa spp.	-3.0	8	009	1.6	sand	6.1	5.5	2.6	
C02	Fort Collins, CO USA	40.58	105.33	2400	Pinus contorta	6.1	10	350	1.8	sandy loam	5.7	6.0	2.5	
C03	Shortgrass Steppe LTER, CO USA	40.80	104.83	1500	Bouteloua gracilis, Buchloe dactyloides,	9.3	14	322	0.8	sandy loam	6.0	4.0	3.0	
CR1	Coffey Ranch, TX USA	33.93	97.23	250	Sphaeralcea coccinea Schizachyrium scoparium, Andropogon gerardii,	18.4	25	850	2.8	loam	8.0	0.6	4.1	
DF1	Duke Forest, NC USA	35.97	79.08	163	Pantcum virgatum Pinus taeda, Liauidambar styraciftua.	14.6	18	1100	2.8	sandv loam	5.4	5.5	2.4	
	×				Liriodendron tulipifera, Cornus florida					5				
DF2	Duke Forest, NC USA	35.97	79.08	163	Liriodendron tulipifera, Liquidambar styraciflua, Carva sv. Octrva virainiana	14.6	18	1100	5.5	loam	6.8	4.2	2.7	
DF3	Duke Forest, NC USA	35.97	79.08	150	Ouercus alba	14.6	27	1100	1.7	loamy sand	5.1	2.1	2.7	
GB1	Great Basin Experimental Range, UT USA	39.33	111.45	3750	Poa spp., Achillea millefolium	2.0	10	400	2.8	clay loam	6.8	1.5	2.9	
GB2	Great Basin Experimental Range, 17T USA	39.32	111.47	3290	Populus tremuloides, Vicia americana, Bromus inermis understory	2.0	13	400	6.9	loam	7.6	0.3	3.8	
GB3	Great Basin Experimental Range,	39.32	111.48	3270	Abies concolor, Picea engelmannii	2.0	13	400	5.7	clay loam	7.2	0.6	3.0	
			L7 111	3020		ć	0	100				0	ć	
GB4	Great Basin Experimental Kange, UT USA	39.27	111.47	C5/5	Penstemon rydbergu, Geranum richardsonu, Achillea millefolium	7.0	10	400	3.6	clay loam	6.9	0.9	7.9	
GB5	Great Basin Experimental Range, UT USA	39.35	111.58	2160	Juniperus osteosperma, Artemisia tridentata, Bromus tectorum	4.8	15	400	1.7	silt loam	8.2	1.9	3.2	

FIERER ET AL.: PREDICTING THE Q10 OF MICROBIAL RESPIRATION

GB3026

GΒ	3026	Ó								F	ER	ER E	T AI	: Pl	REI	DIC	CTIN	IG	TH	ΙE	Q	10	OF	FΝ	1ICI	RO	BI	AI	ĿF	RE	SP	IR	AT	TIC	DN							(GB	302	26
	Ö	210	2.5	с 8	0.1 G) - t (۰.۲ ۲.۰	5.0 0.5	2.9	3.1	3.2	3.0	2.6	2.8		2.9		2.9		2.5	2.8	2.7	6	6.2	3.9	3.5	3.0	3.0	2.4	2.3	2.9	3.1	3.0	3.9		4.6	2.2	3.1	3.0	2.5	2.6	7.0	2.8	i
	В	A	1.6	1 4		0.1	t. 4	0.0	<i>č</i> .0	1.1	0.5	0.4	2.9	3.0	2.1		3.0		3.8		2.0	2.2	1.0	, ,	1.0	0.2	0.4	1.8	1.7	10.2	16.3	11.9	0.4	0.6	0.3		0.2	3.0	1.4	2.6	2.8	4.9	0.8	1.4	i
	Hu	htt	7.2	4 3		y v F V		0.0	0.0	4.9	5.4	5.4	5.3	5.5	5.7		6.3		5.6		5.8	5.4	6.4	L.	0.0	7.9	4.9	5.0	4.7	7.7	7.9	8.1	4.6	4. 4.	7.9		8.1	6.9	8.1	7.9	5.0	5.7	1.0	6.8	I
	Texture	C1033	clay	ment vibres	sandy loam	3411UY 104111	104111	sandy loam	loamy sand	loam	sandy loam	sandy loam	sandy loam	sandy loam	sandy loam		sandy loam		sandy loam		sandy loam	loamy sand	silt loam	Ţ	sılt loam	silt loam	silt loam	silty clay loam	sandy loam	sandy loam	loamy sand	loamy sand	sandy loam	sandy loam	silty clay loam		silty clay loam	sand	sand	loam	loamy sand	loamy sand	loamy sand	loam	
	% Oroanic C	OIBAILIN C	2.2	107	0 6	0.7	1.1	0.01	18.2	10.8	6.9	7.6	2.7	4.1	6.4		3.3		5.3		6.3	3.9	6.1		4.0	6.9	13.9	4.1	6.4	0.4	0.1	0.6	10.7	9.9	3.9		3.8	2.3	2.5	2.7	4.3	1.7	8.1	4.6	:
	MAP, mm	IIIII	400	1100	1100	250		0001	1000	1500	2000	2000	1200	1200	1200		1200		1200		750	750	835		C58	835	5000	3500	4500	150	150	150	2200	2200	840		840	400	400	550	600	600 750	00/	500	1
	°C °C	c	10	15	5 v	22	0 4 C	32	3	25	17	17	21	21	21		21		21		18	18	20	c.	70	20	25	28	27	16	16	16	17	17	27		27	15	15	15	×	~ ~	א	15	I.
	°C °C	c	2.0	0 2	0.7	0., o (c	0.77	0.22	0.22	21.2	9.4	9.4	8.6	8.6	8.6		8.6		8.6		3.0	3.0	12.5	0	C.21	12.5	19.3	21.5	20.5	21.0	21.0	21.0	8.8	8.8	18.1		18.1	10.3	10.3	15.0	3.6	3.6	0.5	17.2	
	Dominant Plant Snecies	DOMINIANT FIAM SPECIES	Lupinus perennis, Bromus inermis,	Achured munyonum, taraxicum opticinates Onorous rubra Acor rubrum Onorcus volutina	Zucicus I usiu, 1100 1 usi uni, Zucicus Venunu Dinus merinasa	Donnicotum alandactimum		Pennisetum clandestinum	Pennisetum clandestinum	Pennisetum clandestinum	Pseudotsuga menziesii, Tsuga heterophylla, Thuia nliotta	Alnus rubra, Rhododendron macrophyllum	Poa pratensis, Galium aparine, Solidago sp.	Anthoxanthum odoratum, Coronilla varia, Galium anarine Schizachwium sconarium	Galium aparine, Solidago sp.,	Phleum pratensis, Poa pratensis	Dactylis glomerata, Phleum pratensis, Poa pratensis,	Anthoxanthum odoratum, Galium aparine	Anthoxanthum odoratum, Datcylis glomerata,	Galium aparine, Solidago sp.	Acer saccharum, Corylus cornuta, Populus tremuloides	Pinus resinosa	Andropogon gerardii, Sorghastrum nutans,	Poa pratensis	Andropogon gerardu, Sorghastrum nutans, Schizachyrium scoparium	Juniperus virginiana	Tabebuia rigida	Dacryodes excelsa	Cyrilla racemiflora	Larrea tridentata, Ambrosia dumosa, Yucca schidigera	Larrea tridentata, Ambrosia dumosa, Yucca shidigera	Larrea tridentata, Ambrosia dumosa	Poa spp., Bromus spp.	Abies procera	Prosopis glandulosa, Gleditsia triacanthos,	Ulmus crassifolia	Andropogon gerardii, Schizachyrium scoparium	Pinus edulis	Juniperus monosperma	Ceanothus megacarpus, Adenostoma fasciculatum	Pinus jeffreyi, Abies concolor	Artemisia tridentata, Ceanothus prostratus	Calamagrosus brewert, Carex spp., Saux arcuca, Vaccinium cassificaum	vuccinium cuespitosum Ouercus douglasii. Bromus sob.	TT /O
	Elevation, m	Ш	3750	300	300	000	007	/00/	1000	1500	700	700	75	75	75		75		75		550	550	100	001	100	100	1000	400	700	1171	967	776	1300	1300	50	1	50	1905	1905	500	3000	3000	C175	300	I
	Longitude, °W	*	111.45	71 77	72 17	155 70		0/.001	0/.001	155.70	122.15	122.15	73.75	73.75	73.75		73.75		73.75		95.17	95.17	96.60	00.00	96.60	96.60	65.83	65.83	65.83	115.60	115.65	115.87	123.53	123.53	96.87		96.87	111.55	111.55	119.80	118.17	118.17	118.05	120.05	
	Latitude, °N	AT 1	39.33	47 50	42.50	20.05	20.00	20.05	20.08	20.1	44.22	44.22	41.80	41.80	41.80		41.80		41.80		47.17	47.18	39.10		39.10	39.10	18.30	18.30	18.30	34.90	34.90	35.2	49.47	49.47	31.47		31.47	35.37	35.37	34.47	36.45	36.45	20.05	34.70	:
ble 1. (continued)	bil de Location	TOCATION	36 Great Basin Experimental Range,	01 USA 71 Harvard Forest MA IISA	77 Harriard Forest MA 11SA	1 Vehele Danimente HI IICA	T TV-11- D1- TT TTCA	2 Nonala Peninsula, HI USA	S Konala Peninsula, HI USA	4 Kohala Peninsula, HI USA	1 H.J. Andrews Experimental Forest,	2 H.J. Andrews Experimental Forest, OR 11SA	1 Institute for Ecosystem Studies, NY USA	2 Institute for Ecosystem Studies, NV 11SA	3 Institute for Ecosystem Studies,	NY USA	4 Institute for Ecosystem Studies, NY USA		5 Institute for Ecosystem Studies,	NY USA	1 Itasca Lake State Park, MN USA	2 Itasca Lake State Park, MN USA	Main Konza Prairie LTER, KS USA		22 KONZA PTAIRIE LIEK, KS USA	33 Konza Prairie LTER, KS USA	01 Luquillo LTER, Puerto Rico	32 Luquillo LTER, Puerto Rico	33 Luquillo LTER, Puerto Rico	D1 Mojave Desert, CA USA	D2 Mojave Desert, CA USA	D3 Mojave Desert, CA USA	P1 Mary's Peak, OR USA	P2 Mary's Peak, OR USA	11 USDA Grassland Research Center,	Riesel, TX USA	2 USDA Grassland Research Center, Riesel, TX USA	v1 Sunset Crater, AZ USA	v2 Sunset Crater, AZ USA	31 Santa Barbara, CA USA	VI Sierra Nevada Mts., CA USA	V2 Sierra Nevada Mts., CA USA	1 Sequota National Park, CA USA	1.1 Sedgwick Reserve. CA USA	
Ta	йČ	5	B	Ē	ΞĦ	3 5	l	E	Ξ	Ξ	Η	ſΗ	Έ	Έ	Ε		É		Ξ		E	E	Ŋ		Z	K	Ц	Ц	Ц	Σ	Σ	Σ	Σ	Σ	RT		RJ	SA	S^{A}	SE	S	S S	N.	SR	

GB3026

FIERER ET AL : PREDICTING THE O., OF MICROBIAL RESPIRATION

Table 1	. (continued)												
Soil		Latitude,	Longitude,	Elevation,		MAT.	MMT,	MAP.	%	Texture			
Code	Location	Ν°	Mo	m	Dominant Plant Species	°C	°C	mm	Organic C	Class	μH	B (2_{10}
SR2	Sedgwick Reserve, CA USA	34.68	120.05	300	Bromus spp., Hordeum murinum	17.2	15	500	3.3	loam	7.0	3.3	2.8
SV1	Sevilleta LTER, NM USA	34.33	106.73	1480	Larrea tridentata	13.5	20	210	0.3	sandy loam	8.3	7.2	3.2
SV2	Sevilleta LTER, NM USA	34.33	106.73	1480	Bouteloua eriopoda, Bouteloua gracilis	13.5	20	210	0.2	loamy sand	4.8	9.2	2.9
SV3	Sevilleta LTER, NM USA	34.33	106.73	1480	Larrea tridentata, Bouteloua eriopoda	13.5	20	210	0.3	loamy sand	8.3	8.3	3.0
SV4	Sevilleta LTER, NM USA	34.33	106.73	1480	Larrea tridentata, Bouteloua eriopoda	13.5	20	210	0.3	loamy sand	8.3	9.3	3.1
TL1	Toolik Lake LTER, AK USA	68.63	149.58	894	Eriophorum vaginatum	-9.3	9	400	7.0	loam	4.6	1.2	2.7
TL2	Toolik Lake LTER, AK USA	68.63	149.58	894	Salix spp., Betula nana	-9.3	9	400	15.8	silt loam	6.5	0.5	3.2
TL3	Toolik Lake LTER, AK USA	68.63	149.58	894	Vaccinium spp.	-9.3	9	400	5.4	loam	4.2	3.1	4.2
VC1	Valles Caldera, NM USA	35.90	106.55	2746	Picea engelmannii, Populus tremuloides	2.5	7	500	5.7	sandy loam	5.6	3.0	2.8
VC2	Valles Caldera, NM USA	35.90	106.55	2733	Blepharoneuron tricholepis, Potentilla fruticosa, Poa pratensis, Achillea millefolium	2.5	٢	500	3.4	loam	6.0	2.0	2.9
aMA	, mean annual temperature; MMT,	mean month	ly temperatu	re for the mon	h when samples were collected; MAP, mean annual pr	ecipitation	; B, rela	tive carb	on availabilit	ty (see equation	(1) in s	ection	6

calculated as the change in total extractable nitrogen over the course of the 50-day incubation.

2.4. Q₁₀ Determination

[11] We estimated Q₁₀ values from incubations of short duration in order to characterize the temperature sensitivity of the more labile SOM fractions. With longer incubations, organic C pools become depleted over time, altering the apparent Q₁₀ [Burke et al., 2003; Mikan et al., 2002; Reichstein et al., 2000]. After the 10-day equilibration period (see above), soil samples (4 g wet weight) were weighed into individual 50-mL plastic tubes sealed with gas-tight lids fitted with rubber septa. Rates of microbial CO₂ production were simultaneously measured at five temperatures $(10^{\circ}-30^{\circ}C, 5^{\circ}C \text{ increments})$ with duplicate samples per temperature. Samples were placed in five separate controlled temperature incubators and soil temperatures were measured using Type K thermocouples and a Campbell CR10x (Logan, Utah) data logger to measure the actual soil temperatures during the assay. After a 1-hour equilibration at the target temperature, headspace CO_2 concentrations were measured with an infrared gas analyzer (Licor Model LI-6252). CO_2 concentrations were measured again after 6-24 hours and microbial respiration rates were calculated as the net rate of CO₂ accumulation in the headspace. Headspace CO2 concentrations were kept below 0.5% in all cases. A similar method of measuring Q_{10} values was previously utilized by Fierer et al. [2005]. The dependence of microbial respiration on temperature was described by the equation

$$y_T = B e^{kT}, \tag{1}$$

where y_T is the respiration rate at any given temperature (in μ g C-CO₂ g soil organic C⁻¹ h⁻¹), *T* is temperature in °C, and *B* and *k* are the exponential fit parameters describing the *y* intercept and slope, respectively, of the line describing the temperature-respiration relationship. This exponential equation accurately described the data obtained for each sample ($r^2 > 0.95$ in all cases). We used Q₁₀ instead of *k* to describe the temperature sensitivity of decomposition because Q₁₀ values are more straightforward to interpret. Q₁₀ is calculated from equation (2),

$$Q_{10} = e^{10k}.$$
 (2)

[12] We used the parameter B as an index of relative organic C quality, the fraction of the total soil organic C pool that can be mineralized over a given period of time [see *Fierer et al.*, 2005]. The parameter B provides a robust estimate of soil organic C bioavailability from soils incubated under controlled conditions. While conventional indices based on elemental ratios or C fractions, such as lignin:N or C:N ratios, are often used to estimate carbon quality in long-term litter decomposition studies [*Hobbie*, 1996], these indices are not useful estimators of organic C quality in mineral soils and they are not good predictors of organic C availability at specific points in time [*Fierer et al.*, 2005]. The measurement of the specific rate of microbial respiration, as done here, is a type of "biological" fraction-

The dominant plant species at each site were determined in a qualitative manner at the time of sample collection

Ecosystem Type	Number of Soils	Range of B Values	Average B	Range of Q ₁₀ Values	Average Q ₁₀
Boreal Forest/Tundra	7	0.5-5.5	2.6 (0.6)	2.4-3.2	2.7 (0.1)
Humid Temperate Forest	20	0.4-5.5	1.6 (0.4)	2.4-3.5	2.9 (0.1)
Humid Temperate Grassland	18	0.2-3.8	1.6 (0.3)	2.6 - 4.6	3.1 (0.1)
Dry Forest	7	0.3-6.0	2.5 (0.6)	2.2 - 3.8	2.8 (0.2)
Dry Grassland/Shrubland	18	0.5-16.3	5.0 (1.0)	2.3 - 4.1	2.9 (0.1)
Tropical Forest/Grassland	7	0.3 - 1.8	0.9 (0.2)	2.9 - 4.0	3.3 (0.2)
All Soils	77	0.2-16.3	2.6 (0.3)	2.2-4.6	3.0 (0.1)

Table 2. Q₁₀ and B Values for the Soils Included in This Study With the Soils Grouped Into General Ecosystem Categories^a

^aStandard errors of the mean Q₁₀ and *B* values are indicated in parentheses.

ation of soil organic carbon pools and remains the most accurate method for estimating substrate availability to soil microorganisms at any given point in time [*Robertson and Paul*, 2000].

[13] *Reichstein et al.* [2005] have illustrated that, for an individual set of data points, the error terms for *B* and Q_{10} will be negatively correlated due to inherent statistical model properties [see also *Draper and Smith*, 1981]. If we had estimated *B* and Q_{10} separately using replicate samples, this autocorrelation would be removed. However, we do not expect the existence of this autocorrelation to affect the results reported here since *B* and Q_{10} are estimated from 77 independent data sets (one data set for each of the soil samples included in this study). There is no a priori expectation that Q_{10} and *B* should be correlated across the range of soils tested.

2.5. Statistical Analyses

[14] Soil and site variables with non-normal data distribution were log-transformed prior to performing analyses. Normality pretransformation and posttransformation was checked with quantile plots. All statistical analyses were conducted using Systat [*Systat*, 2000]. Correlations between measured soil variables and Q_{10} values were examined using linear regression analyses. Correlations and the corresponding residuals were checked graphically to screen for possible nonlinear correlations. Multivariate models were compared using the Akaike information criteria [*Burnham and Anderson*, 2002], a model selection technique balancing model fit and parsimony.

3. Results

[15] Across all soils, the average measured Q_{10} value was 3.0 (median = 2.9), but the range in Q_{10} values (2.2–4.6) was considerable (Table 2). In general, soils collected near one another had similar Q_{10} values (Table 1), though this was not always the case (e.g., the soils from Toolik Lake, Alaska). We grouped the soils into general vegetation categories (grassland, coniferous forest, deciduous forest, and shrubland) and found no significant differences in the average Q10s across these broadly defined vegetation categories (P = 0.20). There were differences in measured Q_{10} values across ecosystem types (Table 2) but these differences were not significant (P = 0.08). While the sample sizes were relatively small (N = 7 in both cases), soils from tropical ecosystems had the highest average Q_{10} (3.3) with soils from polar and tundra ecosystems having the lowest average Q_{10} (2.7) of the six ecosystem categories.

[16] Of all the soil and site variables measured, only two variables were significantly correlated with Q_{10} (Table 2): relative substrate quality (*B* from equation (1)) and the mean monthly temperature for the sampling month (MMT). Individually, relative substrate quality and MMT explained 44% and 17%, respectively, of the variability in Q_{10} values across all soils (Figure 1 and Table 3). Relative substrate quality was negatively correlated with Q_{10} ; decomposition in soils with organic C pools of lower lability was more temperature sensitive than decomposition in soils with abundant mineralizable organic C (Figure 1a). MMT was

Figure 1. The relationship between measured Q_{10} values and (a) the ln of parameter *B* and (b) the mean monthly temperature for the month the samples were collected. *B* is an index of relative substrate quality and is obtained from equation (1) (see section 2).

Table 3. Linear Correlations Between Soil and Site Variables and Measured Q₁₀ Values^a

Soil/Site Variable	Range of Values	Correlation with Q ₁₀ r
Relative substrate quality (<i>B</i> in equation (1)) ^b	0.2-16.3	-0.67°
MMT for sampling month, °C	6-28	0.41^{d}
% silt + clay	8-84	0.34
CO ₂ production rate, ^b μ g C-CO ₂ g soil ⁻¹ d ⁻¹	0.5-23.1	-0.34
Minimum MMT, °C	-23-22	0.30
MAT, °C	-9-23	0.30
Annual range in MMT, °C	2-31	-0.25
C:N ratio	4.6-37.7	-0.23
pH	3.6-8.4	0.22
Maximum MMT, °C	7-32	0.21
% organic C	0.1 - 18.2	0.21
Soil moisture deficit, ^b cm H ₂ O yr ⁻¹	-411 - 108	-0.08
Microbial biomass, ${}^{b} \mu g C-CO_2 g soil^{-1} d^{-1}$	0.7 - 18.4	-0.07
Net N mineralization, $\mu g N g soil^{-1} d^{-1}$	-0.8 - 1.7	-0.02

^aMAT, mean annual temperature; MMT, mean monthly temperature (historical averages); SMD, average annual soil moisture deficit. Variables are listed in order of the strength of their correlation; except for the first two cases, no correlations were significant at the P = 0.10 level.

^bValues log-transformed in order to normalize data before performing correlation analyses.

Correlation with Bonferroni-corrected significance at P < 0.001 level.

^dCorrelation with Bonferroni-corrected significance at P < 0.01 level.

positively correlated with Q_{10} , as soils that experienced higher average temperatures during the sampling month tended to have higher Q_{10} values (Figure 1b). None of the other climatic characteristics examined were significant predictors of Q_{10} (Table 3). Together, MMT and relative substrate quality (*B*) could explain 53% of the variability in Q_{10} values ($Q_{10} = -0.26*\ln B + 0.02*MMT + 2.7, r = 0.73,$ P < 0.001). The addition of other variables to the model did not significantly improve model fit.

[17] Although the parameter *B* (from equation (1)) was estimated from relatively short-term incubations (<24 hours, see section 2), we observed a strong correlation (r = 0.98, P < 0.001) between *B* values (log-transformed) and the average rates of CO₂ production, (in μ g C-CO₂ g soil organic C⁻¹ h⁻¹, also log-transformed) measured over the course of the 50-day microbial respiration assays. No other soil or site characteristics measured here were significantly correlated with *B* (P > 0.40 in all cases, data not shown).

4. Discussion

4.1. Variability in Q₁₀

[18] Across all soils the average Q_{10} value was 3.0. However, the range in measured Q_{10} values was reasonably large (Table 1) and the assumption of a single "average" Q_{10} value is unrealistic. The large range in measured Q_{10} values is particularly striking considering that Q_{10} values were measured for an identical period of time and all of the soils were adjusted to the same percentage of water holding capacity. Other studies measuring microbial decomposition under controlled conditions have also reported a high degree of variability in measured Q_{10} values between different types of soil and litter [*Fierer et al.*, 2005; *Holland et al.*, 2000; *Kätterer et al.*, 1998; *Kirschbaum*, 1995; *Ross and Cairns*, 1978].

[19] The extreme sensitivity of biome-level soil C models to changes in Q_{10} has been highlighted by *Townsend et al.* [1992] and *Lenton and Huntingford* [2003]. Our large range

in measured Q_{10} values suggests that the use of a single Q_{10} in soil carbon models could lead to significant errors in estimating the sensitivity of SOM pools to climate change. If the average Q₁₀ is estimated correctly, variability in Q₁₀ values at small spatial scales would have only a minimal affect on the accuracy of models examining SOM dynamics over large areas, where many ecosystem/soil types are integrated into a single model. However, models examining SOM dynamics at higher spatial resolutions (local or regional scales) may be significantly improved by explicitly considering the variability in Q₁₀ values and applying soil-specific Q₁₀ values [Canadell et al., 2000; Burke et al., 2003]. Of course, since Q₁₀ is most strongly correlated with relative organic carbon quality (the parameter B), a parameter that is most easily measured in the laboratory, the determination of soil-specific Q_{10} values is no easy task. If methods can be developed to more rapidly estimate B values across a range of soil types, our ability to parameterize soil-specific Q₁₀ values will be dramatically improved.

4.2. Q₁₀ and Organic Carbon Quality

[20] There was a strong negative relationship between the relative quality of soil organic carbon and Q_{10} values across the wide range of soils examined. SOM quality alone (the parameter *B*) explained 44% of the variability in Q_{10} values (Table 3). This finding supports the carbon quality-temperature hypothesis which predicts that the mineralization of low-quality substrates will have a higher Q_{10} than the mineralization of more labile substrates. The inverse relationship between Q_{10} and substrate quality (which we define as microbial CO₂ production per unit organic C) appears to be a general pattern, having been observed in both experimental studies (Table 4) and modeling studies [*Hyvönen et al.*, 2005; *Knorr et al.*, 2005].

[21] Here we used potential microbial CO_2 production as a bio-assay to index C quality (*B*). The *Bosatta and Ågren* [1999] "carbon quality-temperature" hypothesis defines C quality biochemically, as the number of enzymatic steps

Table 4. Other Published Experimental Studies in Which an Inverse Relationship Between Measured Q_{10} Values and Substrate QualityHas Been Observed^a

Reference	Study Characteristics	Temperature Range of Q ₁₀ Measurements	Range in Measured Q ₁₀ Values	Description of Results
		Time Course Stu	ıdies	
Fierer et al. [2005]	53-day incubation of 24 litter samples	10°-30°C	2.1-3.4	significant relationships between Q_{10} and <i>B</i> with incubation time
Fang et al. [2005]	100-day incubation of 4 soils	4°-44°C	2.0-2.6	over the course of the incubation, respiration rates decreased by $\approx 60\%$ and $Q_{10}s$ increased by $\approx 10\%$
		Variable Substrate	Studies	
Leifeld and Fuhrer [2005]	4 fractionated soils	5°-25°C	3-15	across the different soil fractions, Q ₁₀ s were inversely related to CO ₂ production rate
Fierer et al. [2005]	24 grass litters	$10^{\circ}-30^{\circ}C$	2.1-3.4	generally strong relationship between B and Q_{10} across a range of litter types
Mikan et al. [2002]	5 arctic tundra soils	$0.5^{\circ} - 14^{\circ}C$	4.6 - 9.4	strong relationship between B and Q_{10} (r ² = 0.94)
Fierer et al. [2003a]	6 soils from depth profile	10°-35°C	2.8-4.1	large decrease in B with soil depth corresponded to significant increase in Q_{10}
this study	77 soils	$10^{\circ} - 30^{\circ}C$	2.2 - 4.6	significant inverse relationship between Q_{10} and B

^aSubstrate quality is defined as microbial CO_2 production per unit total organic C. "Time course studies" are those studies in which an individual soil or litter type was incubated over time and Q_{10} was measured at specific intervals during the incubation as substrate quality declined with time. "Variable substrate studies" refers to those studies where Q_{10} were values were determined simultaneously on >3 distinct litter or soil types. Because of methodological differences between studies, we have not attempted to compare these studies in a quantitative manner.

required to mineralize the organic C to CO2. However, some of the organic C pools in mineral soils are likely to be protected from microorganisms ("stabilized") by physicochemical mechanisms, such as adsorption to mineral surfaces or inclusion inside aggregates. The means by which soil organic C is protected from microbial mineralization is likely to have a large effect on both B and Q_{10} of the particular organic C pool being mineralized [Thornley and Cannell, 2001]. By defining C quality as the rate of microbial CO_2 production per unit organic C, we are effectively combining biochemically and physico-chemically protected C pools in our estimation of B. If all of the organic C was biochemically protected, we would expect the Q10 and C quality relationship to be stronger. Indeed, this may explain why the correlations between C quality and Q₁₀ appear to be particularly robust in studies examining plant litters [Fierer et al., 2005] and organic soils [Mikan et al., 2002], where physico-chemical protection of organic C is limited. A more detailed accounting of the C protection mechanisms in each soil may improve our ability to predict the biochemical lability of soil organic C pools and, consequently, the temperature sensitivity of microbial CO₂ production in soil.

4.3. Q₁₀ and the Ambient Temperature Regime

[22] A modest though statistically significant portion (17%, Table 3) of the variation in Q_{10} values can be solely explained by site climate characteristics, specifically the MMT at the site for the month of sample collection, despite the fact that all soils were exposed to ambient temperatures during shipping and soils were equilibrated at 20°C for 10 days prior to the Q_{10} measurements. Since there is no significant correlation between MMT and *B* (*P* > 0.5), the apparent influence of MMT on Q_{10} is independent of the *B*/ Q_{10} relationship. One possible explanation for this result is

that the microbial communities in each soil have adapted to their antecedent temperature regime, the mean seasonal temperature. We know that the temperature optima of microorganisms can vary widely [Madigan et al., 1997] and that microorganisms are able to adapt to the temperature regime of a particular environment [Cooper et al., 2001; Hahn and Pockl, 2005]. Therefore we might expect that communities that are adapted to warm temperatures would maximize their activities at higher mean temperatures than those communities adapted to cooler temperatures. Likewise, communities adapted to high temperatures should have lower activities (relatively) when exposed to low temperatures than those communities adapted to cooler temperature regimes. As a consequence of any thermoadaptation, we would expect communities adapted to higher antecedent temperatures to exhibit higher Q₁₀s across the range of temperatures tested $(10^{\circ}-30^{\circ}C)$, than those communities adapted to cooler temperatures, yielding the observed relationship between MMT and Q₁₀. At this point, this mechanism is merely hypothetical and further research is necessary to determine the prevalence of thermoadaptation by microbial communities and its role in determining the temperature dependency of SOM decomposition.

4.4. Assay Methods and the Estimation of Q_{10}

[23] For this study we estimated Q_{10} by incubating replicate soil samples for less than 24 hours at five different temperatures. The specific characteristics of the chosen Q_{10} assay method (incubation time, the range of temperatures, parallel versus sequential incubations) can strongly influence estimates of Q_{10} [*Burke et al.*, 2003; *Leifeld and Fuhrer*, 2005; *Mikan et al.*, 2002; *Reichstein et al.*, 2000]. For this reason, we have not attempted to quantitatively compare the Q_{10} values reported here with the Q_{10} values reported in other laboratory-based studies. However, it is

important to mention some of the specific advantages and limitations of the Q_{10} assay used here.

[24] The short-duration incubation approach we used was chosen to minimize changes in the sizes of organic C pools over the course of Q_{10} assays. Longer incubations can underestimate Q_{10} because C pools are depleted over time [*Mikan et al.*, 2002]. Likewise, by simultaneously incubating separate replicate soil samples at each temperature, we minimize changes in soil C pools that can occur when individual soil samples are sequentially incubated at a range of temperatures. In this study, temperature-induced shifts in the sizes of soil C pools should have a minimal effect on Q_{10} estimations. Even at the highest assay temperature (30°C) the amount of soil organic C mineralized during the incubation was relatively small (30 to 320 μ g C-CO₂ g soil organic C⁻¹).

[25] With our methodology, Q_{10} was measured at a single point in time after soils were equilibrated for a 10-day period so the reported Q_{10} values will only reflect the temperature sensitivity of the more labile soil organic carbon pools. If the soils were equilibrated for a longer period of time before measuring Q_{10} , we would expect the estimated Q_{10} values to be higher owing to an overall decrease in C quality as the more labile C pools are depleted over time. Only with incubations of longer duration can we begin to understand the temperature sensitivities of more recalcitrant soil organic C pools. Despite the limitations of our "snapshot" method for measuring Q_{10} , the method provides a controlled and replicable method of comparing Q_{10} s across a wide variety of soil types.

[26] It is also important to recognize that the apparent temperature dependency of microbial decomposition may not be equivalent in field and laboratory conditions. In the field, factors such as soil moisture, nutrient availability, root respiration, and C availability are likely to interact with temperature [Gulledge and Schimel, 2000; Rustad et al., 2000], potentially obscuring any relationship between C quality and the Q_{10} of microbial respiration. This may partly explain the discrepancy between the median Q_{10} of 2.9 reported here and the median Q_{10} of 2.4 for total soil CO_2 efflux, as reported from a comprehensive survey of fieldbased studies [Raich and Schlesinger, 1992]. Likewise, in projecting these results to changes in temperature over longer periods of time (years to decades), other factors that may have an important influence on the temperature sensitivity of decomposition, including shifts in C pools, shifts in microbial community composition, and physico-chemical stabilization reactions, will also need to be considered. This work provides an approach for considering how the immediate temperature sensitivity of microbial respiration in soil changes as all those other factors shift over time.

4.5. Absolute Versus Relative Responses to Temperature

[27] Here we show an inverse relationship between C quality and Q_{10} . However, total C emissions from a soil are a function of basal respiration, temperature sensitivity, and total C stocks. Thus absolute changes in overall C respired will be a function of all three of these variables. Here we show that the relative (not the absolute) response of CO₂

production to temperature is greater for soils with low C quality. However, because those soils with low C qualities are likely to have lower basal rates of microbial CO_2 production, a relatively large increase on a small basal level (for a low-quality soil) may be a smaller absolute amount of C respired than a smaller increase over a larger basal value (for a high-quality soil). Additionally, absolute responses should be driven by total C supply and soils vary enormously in the sizes of their total C stocks. This distinction between absolute and relative responses may explain why soil warming experiments [*Luo et al.*, 2001; *Oechel et al.*, 2000] have observed a decrease in the apparent temperature sensitivity of respiration as labile C pools are depleted by warming, lowering the absolute response of CO_2 production to temperature [*Knorr et al.*, 2005].

5. Summary

[28] To our knowledge, this study is the first to compare the temperature dependence of microbial decomposition across a wide range of soil types. Our goal was not to identify a single, average Q_{10} value that best describes the temperature sensitivity of soil microbial respiration across a range of ecosystems. Rather, we focused on the variability in Q₁₀ values and the identification of those biotic and abiotic factors that influence the temperature sensitivity of soil microbial respiration. We found that by considering only two variables, MMT and carbon quality (B), we could predict more than 50% of the variability in Q_{10} values. The predictive power of this model is impressive considering that the soils included in this survey represent a broad range of soil and site characteristics. This work represents an important first step toward understanding the fundamental mechanisms governing the temperature dependence of SOM decomposition.

[29] Acknowledgments. We thank the many individuals who donated their time and resources to help with soil collection and scientists from the LTER research network who made their sites available. We also want to thank Will Cook, Allen Doyle, and Patricia Holden for their valuable assistance on this project. This work was supported by a NSF Postdoctoral Fellowship to N. F. and grants from the IAI, Mellon Foundation, NIGEC/DOE, and NSF to R. B. J.

References

- Ågren, G. I., and E. Bosatta (2002), Reconciling differences in predictions of temperature response of soil organic matter, *Soil Biol. Biochem.*, 34, 129–132.
- Bailey, R., P. E. Avers, T. King, and W. H. McNab (1994), Ecoregions and subregions of the United States with supplementary table of map unit descriptions, report, USDA For. Serv., Washington, D. C.
- Batjes, N. H. (1996), Total carbon and nitrogen in the soils of the world, *Eur. J. Soil Sci.*, 47, 151–163.
- Bosatta, E., and G. I. Ågren (1999), Soil organic matter quality interpreted thermodynamically, *Soil Biol. Biochem.*, 31, 1889–1891.
- Burke, I., J. P. Kaye, S. P. Bird, S. A. Hall, R. L. McCulley, and G. L. Sommerville (2003), Evaluating and testing models of terrestrial biogeochemistry: The role of temperature in controlling decomposition, in *Models in Ecosystem Science*, edited by C. Canham et al., pp. 225–253, Princeton Univ. Press, Princeton, N. J.
- Burnham, K., and D. Anderson (2002), Model Selection and Inference: A Practical Information-Theoretic Approach, 2nd ed., Springer, New York.
- Canadell, J. G., et al. (2000), Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding, *Ecosystems*, *3*, 115–130.
- Cooper, V. S., A. F. Bennett, and R. E. Lenski (2001), Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment, *Evolution*, 55, 889–896.

- Draper, N., and H. Smith (1981), *Applied Regression Analysis*, John Wiley, Hoboken, N. J.
- Fang, C., P. Smith, J. B. Moncrieff, and J. U. Smith (2005), Similar response of labile and resistant soil organic matter pools to changes in temperature, *Nature*, 433, 57–59.
 Fierer, N., A. S. Allen, J. P. Schimel, and P. A. Holden (2003a), Controls on
- Fierer, N., A. S. Allen, J. P. Schimel, and P. A. Holden (2003a), Controls on microbial CO₂ production: A comparison of surface and subsurface soil horizons, *Global Change Biol.*, 9, 1322–1332.
- Fierer, N., J. P. Schimel, and P. A. Holden (2003b), Variations in microbial community composition through two soil depth profiles, *Soil Biol. Biochem.*, 35, 167–176.
- Fierer, N., J. M. Craine, K. McLauchlan, and J. P. Schimel (2005), Litter quality and the temperature sensitivity of decomposition, *Ecology*, 86, 320–326.
- Gulledge, J., and J. P. Schimel (1998), Moisture control over atmospheric CH₄ consumption and CO₂ production in diverse Alaskan soils, *Soil Biol. Biochem.*, *30*, 1127–1132.
- Gulledge, J., and J. P. Schimel (2000), Controls over carbon dioxide and methane fluxes across a taiga forest landscape, *Ecosystems*, 3, 269–282.
- Hahn, M. W., and M. Pockl (2005), Ecotypes of planktonic Actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats, *Appl. Environ. Microbiol.*, 71, 766–773.
- Hobbie, S. E. (1996), Temperature and plant species control over litter decomposition in Alaskan tundra, *Ecol. Monogr.*, *66*, 503–522.
- Holland, E., J. C. Neff, A. R. Townsend, and B. McKeown (2000), Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: Implications for models, *Global Biogeochem*. *Cycles*, 14, 1137–1151.
- Howard, D. M., and P. J. A. Howard (1993), Relationships between CO₂ evolution, moisture content and temperature for a range of soil types, *Soil Biol. Biochem.*, 25, 1537–1546.
- Hyvönen, R., G. I. Ågren, and P. Dalias (2005), Analysing temperature response of decomposition of organic matter, *Global Change Biol.*, *11*, 770–778.
- Intergovernmental Panel on Climate Change (1996), *Climate Change 1995: The Science of Climate Change*, 364 pp., Cambridge Univ. Press, New York.
- Jobbágy, E. G., and R. B. Jackson (2000), The vertical distribution of soil organic carbon and its relation to climate and vegetation, *Ecol. Appl.*, *10*, 423–436.
- Jones, C. D., P. Cox, and C. Huntingford (2003), Uncertainty in climatecarbon-cycle projections associated with the sensitivity of soil respiration to temperature, *Tellus, Ser. B*, 55, 642–648.
- Kätterer, T., M. Reichstein, O. Andren, and A. Lomander (1998), Temperature dependence of organic matter decomposition: A critical review using literature data analyzed with different models, *Biol. Fertil. Soils*, 27, 258–262.
- Kirschbaum, M. U. F. (1995), The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage, *Soil Biol. Biochem.*, 27, 753–760.
- Kirschbaum, M. U. F. (2000), Will changes in soil organic carbon act as a positive or negative feedback on global warming?, *Biogeochemistry*, 48, 21–51.
- Knorr, W., I. C. Prentice, J. I. House, and E. A. Holland (2005), Long-term sensitivity of soil carbon turnover to warming, *Nature*, 433, 298–301.
- Leifeld, J., and J. Fuhrer (2005), The temperature response of CO₂ production from bulk soils and soil fractions is related to soil organic matter quality, *Biogeochemistry*, *75*, 433–453.
- Lenton, T., and C. Huntingford (2003), Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model, *Global Change Biol.*, *9*, 1333–1352.

- Lloyd, J., and J. A. Taylor (1994), On the temperature dependence of soil respiration, *Funct. Ecol.*, *8*, 315–323.
- Luo, Y., S. Wan, D. Hui, and L. L. Wallace (2001), Acclimatization of soil respiration to warming in a tall grass prairie, *Nature*, *413*, 622–625.
- Madigan, M., J. M. Martinko, and J. Parker (1997), Brock Biology of Microorganisms, 8th ed., 986 pp., Prentice-Hall, Upper Saddle River, N. J.
- Melillo, J. M., et al. (1995), Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO₂ doubling, *Global Biogeochem. Cycles*, *9*, 407–437.
- Mikan, C., J. P. Schimel, and A. P. Doyle (2002), Temperature controls of microbial respiration in arctic tundra soils above and below freezing, *Soil Biol. Biochem.*, *34*, 1785–1795.
 Oechel, W., G. L. Vourlitis, S. J. Hastings, R. C. Zulueta, L. Hinzman, and
- Oechel, W., G. L. Vourlitis, S. J. Hastings, R. C. Zulueta, L. Hinzman, and D. Kane (2000), Acclimation of ecosystem CO₂ exchange in the Alaskan Arctic in response to decadal climate warming, *Nature*, 406, 978–981.
- Raich, J. W., and W. H. Schlesinger (1992), The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate, *Tellus, Ser. B*, 44, 81–99.
- Reichstein, M., F. Bednorz, G. Broll, and T. Kätterer (2000), Temperature dependence of carbon mineralisation: Conclusions from a long-term incubation of subalpine soil samples, *Soil Biol. Biochem.*, 32, 947–958.
- Reichstein, M., T. Kätterer, O. Andrén, P. Ciais, E. D. Schulze, W. Cramer, D. Papale, and R. Valentini (2005), Temperature sensitivity of decomposition in relation to soil organic matter pools: Critique and outlook, *Biogeosciences*, 2, 317–321.
- Robertson, G. P., and E. A. Paul (2000), Decomposition and soil organic matter dynamics, in *Methods in Ecosystem Science*, edited by O. E. Sala et al., pp. 104–116, Springer, New York.
- Ross, D., and A. Cairns (1978), Influence of temperature on biochemical processes in some soils from tussock grasslands, *N. Z. J. Sci.*, *21*, 581–589.
- Rustad, L. E., T. G. Huntington, and R. D. Boone (2000), Controls on soil respiration: Implications for climate change, *Biogeochemistry*, 48, 1–6.
- Schimel, D. S., B. H. Braswell, E. A. Holland, R. McKeown, D. S. Ojima, T. H. Painter, W. J. Parton, and A. R. Townsend (1994), Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils, *Global Biogeochem. Cycles*, 8, 279–293.
- Stryer, L. (1995). Biochemistry, 4th ed., Freeman, W. H., New York.
- Systat (2000), Systat for Windows, SPSS Inc., Evanston, Ill.
- Thornley, J. H. M., and M. G. R. Cannell (2001), Soil carbon storage response to temperature: An hypothesis, Ann. Bot., 87, 591–598.
- Thornthwaite, C. (1948), An approach toward a rational classification of climate, *Geogr. Rev.*, 38, 55–94.
 Townsend, A., P. M. Vitousek, and E. A. Holland (1992), Tropical soils
- Townsend, A., P. M. Vitousek, and E. A. Holland (1992), Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures, *Clim. Change*, 22, 293–303.
- Waksman, S., and F. Gerretsen (1931), Influence of temperature and moisture upon the nature and extent of decomposition of plant residues by microorganisms, *Ecology*, 12, 33–60.

B. P. Colman and J. P. Schimel, Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA.

N. Fierer, Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, 216 UCB, CIRES Building, Boulder, CO 80309-0216, USA. (noahfierer@gmail.com)

R. B. Jackson, Department of Biology, Duke University, Durham, NC 27708, USA.