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[1] The production of CO, by soil microorganisms is an important component of the
global carbon cycle, and its temperature sensitivity is poorly constrained in global
models. To improve our understanding of the factors controlling the temperature
dependence of soil microbial respiration, we analyzed the temperature sensitivity of labile
soil organic carbon decomposition for 77 soils collected from a wide array of ecosystem
types. Across all of the soils, the average Qo value (the factor by which decomposition

rates increase for a 10°C increase in temperature) was 3.0, but the range in Q;, values
was substantial (2.2 to 4.6). A large percentage (45%) of the variation in Q, values
could be explained by the relative rate of microbial respiration per unit organic C, an
analog for C quality. This result provides support for the “carbon quality-temperature”
hypothesis that directly links the temperature dependence of microbial decomposition and
the biochemical recalcitrance of soil organic carbon. A smaller percentage (17%) of
the variability in Qo values could be explained by the mean monthly temperature at the
time of sampling, suggesting that microbial communities may adapt to the antecedent
temperature regime. By showing that the Q;( of microbial respiration in soil is largely
predictable under standardized incubation conditions, this work increases our
understanding of the temperature sensitivity of labile soil organic carbon stores.
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1. Introduction

[2] Soil is the largest global pool of terrestrial C and the
soil organic C pool (approximately 2400 Pg of C) is at least
three times larger than the size of the atmospheric carbon
pool [Batjes, 1996; Jobbdagy and Jackson, 2000]. The
conversion of soil organic C to CO, by microorganisms is
an important component of the global carbon cycle. We
know that the rate of microbial CO, production from soil
strongly depends on soil temperature [Kdtterer et al., 1998;
Kirschbaum, 1995; Lloyd and Taylor, 1994; Waksman and
Gerretsen, 1931], however there is no consensus on the
specific relationship. Because rates of soil microbial respi-
ration are likely to be more sensitive to temperature than
rates of net primary production [Raich and Schlesinger,
1992; Schimel et al., 1994], the predicted increase in global
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temperatures could cause a net transfer of carbon from soils
to the atmosphere. Without an improved, mechanistic per-
spective on the relationship between temperature and mi-
crobial respiration, we will not be able to accurately predict
the impacts of climate change on global C dynamics
[Intergovernmental Panel on Climate Change, 1996;
Kirschbaum, 2000].

[3] The sensitivity of microbial respiration to temperature
is commonly described by Qq, the factor by which CO,
production increases for a 10°C increase in temperature.
While Q;( can be used to describe the temperature sensi-
tivity of any chemical process, in this study Qo refers
specifically to the temperature sensitivity of microbial CO,
production. The range of Q;( values reported for different
soils and ecosystems (<2 to >6) is considerable [Holland et
al., 2000; Kdtterer et al., 1998; Kirschbaum, 1995]. None-
theless, terrestrial carbon models such as Roth-C and
CENTURY generally assume that the respiration-tempera-
ture relationship is constant, regardless of the characteristics
of the ecosystem or soil in question [Burke et al., 2003;
Melillo et al., 1995]. Since small differences in the assumed
Qo value can dramatically alter estimates of net soil carbon
storage, our inability to accurately predict the temperature
sensitivity of microbial respiration is a major source of
uncertainty in terrestrial carbon models [Holland et al.,
2000; Jones et al., 2003; Lenton and Huntingford, 2003].

[4] One reason for our poor understanding of the temper-
ature dependency of soil CO, production is that few studies
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have quantitatively compared Q;o values across soil and
ecosystem types or tried to evaluate the factors that control
Q0. Even the most comprehensive surveys [Holland et al.,
2000; Howard and Howard, 1993; Ross and Cairns, 1978]
have directly measured Qg values on fewer than 20 unique
soil samples, and no specific mechanisms have been pro-
posed to explain the variability in Qo values. A meta-
analysis of Qo values from published studies is of limited
utility because the variability in the methods of Q;o mea-
surement makes it difficult to compare Q;q values across
studies in a quantitative manner [Burke et al., 2003; Leifeld
and Fuhrer, 2005; Reichstein et al., 2000]. For this study,
we collected 77 distinct soils from across the United States
and measured the short-term temperature sensitivity of
microbial respiration of labile soil organic carbon pools
under controlled laboratory conditions. We measured a suite
of accompanying soil physical, chemical, and biological
characteristics in order to examine relationships between
these characteristics and the measured Q;q values.

[s] We hypothesize that the temperature sensitivity of
microbial CO, production varies predictably across soil
types. More specifically, we hypothesize that the Qg
measured at any given point in time will be inversely
related to the quality of soil organic C being consumed by
microorganisms. This “C quality-temperature” hypothesis,
first proposed by Bosatta and Agren [1999], is based on the
fundamental chemical principle that the temperature sensi-
tivity of a reaction is directly proportional to the net
activation energy, as formulated in the Arrhenius equation
[Stryer, 1995]. Since the enzymatic reactions required to
metabolize simple organic C substrates are almost certain to
have a lower net activation energy than the reactions
required to metabolize structurally complex, low-quality,
C substrates [Agren and Bosatta, 2002; Bosatta and Agren,
1999], we would expect an inverse relationship between soil
organic C quality and the Q( of microbial CO, production.
Fierer et al. [2005] found strong support for this hypothesis
in a study examining the temperature sensitivities of plant
litter decomposition and the decomposition of individual C
compounds. Other studies suggest that the “C quality-
temperature” hypothesis may also apply to the decomposi-
tion of soil organic C pools [Fierer et al., 2003a; Knorr et
al., 2005; Leifeld and Fuhrer, 2005; Mikan et al., 2002]. To
date, however, it is not clear that the “C quality-tempera-
ture” hypothesis can be used to predict the Q( of microbial
respiration across a wide range of ecosystems. If it can, we
are likely to improve our ability to predict climate change
impacts on soil C pools.

2. Methods
2.1. Soil Collection and Processing

[6] A total of 77 unique soils, representing a diverse array
of soil and site characteristics, were collected from through-
out the United States (Table 1). We restricted our sampling
to soils that are unsaturated for most of the year. Soils were
collected near the time of peak plant biomass at each site.
The upper 5 cm of mineral soil was collected from 5-10
locations within each site and composited into a single bulk
sample. All samples were shipped at field moisture content
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to the University of California, Santa Barbara, within a few
days of collection. During shipping, soils were exposed to
ambient temperatures. Immediately after arrival in the
laboratory, soils were sieved to 4 mm, visible root fragments
were removed, and soils were thoroughly homogenized.

[7] Prior to any analyses, all soils were adjusted to 35% of
water-holding capacity, by drying at 20°C or wetting with
deionized water, and equilibrated at 20°C for 10 days. Since
the soils varied significantly in terms of their soil moisture
contents at the time of collection, we adjusted the samples
to a similar percentage of water holding capacity in order to
accurately compare microbial processes across sites. Soils at
the same percentage of water holding capacity should have
similar soil water potentials [Gulledge and Schimel, 1998].
Gravimetric soil moisture contents were determined by
drying soils at 120°C for 48 hours, with 100% of water
holding capacity measured as the gravimetric water content
of soil saturated and allowed to drain over 2 hours in a filter
funnel.

2.2. Site Characterization

[8] Climate information for each site was estimated
from historical average station data (1971-2000) provided
by the National Oceanic and Atmospheric Administration,
USA. Average annual soil moisture deficit (in mm H,0)
was estimated as the sum of the differences between
mean monthly potential evapotranspiration (PET) and
mean monthly precipitation. PET was estimated using
Thornthwaite’s method with a correction for latitude
[Thornthwaite, 1948]. Ecosystem classification for each site
follows Bailey et al. [1994].

2.3. Soil Analyses

[9] Total soil organic carbon and nitrogen contents were
measured on a CE Elantech Model NC2100 elemental
analyzer (ThermoQuest Italia, Milan, Italy) with combus-
tion at 625°C and 900°C, respectively. Soil pH was
measured after shaking a soil/water (1:1 w/v) suspension
for 30 min. Particle size analyses were conducted at the
Division of Agriculture and Natural Resources Analytical
Laboratory, University of California Cooperative Exten-
sion (Davis, California) using a standard hydrometer
method. Soil microbial biomass was estimated used the
substrate induced respiration method described by Fierer
et al. [2003b].

[10] Net N mineralization and microbial CO, produc-
tion rates were measured on triplicate subsamples (4 g
wet weight) over the course of a 50-day incubation at
20°C. After adjustment to 35% of water holding capacity
and equilibration (see above), a series of 6—10 static
incubations per sample were used to measure the average
rate of soil CO, production for the 50-day incubation
period, using the method described by Fierer et al.
[2005]. Triplicate subsamples were harvested initially
and at 50 days for the determination of K,SO,-extractable
NH; and NOj. Samples were extracted for 1 hour with
0.5 M K,SO, and extract NH; and NO3 concentrations
were measured on a Lachat autoanalyzer (Milwaukee,
Wisconsin) using Lachat methods 31-107-06-5-A and
12-107-04-1-B, respectively. Net N mineralization was
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.= concentrations were measured with an infrared gas analyzer
g | g . .
. .8 | E (Licor Model LI-6252). CO, concentrations were measured
R<BEIRS) S = < . . . . .
SRR S3g| ¢ again after 6—24 hours and microbial respiration rates were
2SS SEE|§ . .
§ SIS § §§ 2 calculated as the net rate of CO, accumulation in the
ol T 55 ESINS - 1
8ls sSSsg3 9T 3 headspace. Headspace CO, concentrations were kept below
S S 2E= p p p
LR L E 0.5% in all A similar method of i 1
2588855882, .5% in all cases. A similar method of measuring Q;, values
= 3355893 g §M§ ¥ was previously utilized by Fierer et al. [2005]. The depen-
= § RS %833 3 dence of microbial respiration on temperature was described
- §§§§§&§§%j S8 by the equation
ol & < EERR TS83 - :BekT 1
=) § § g gkl A %0§ E %% yr s ( )
= 1) =
q St R $S°| E . . . .
S § § 355 58 where y7 is the respiration rate at any given temperature (in
Q Q< o= . : —1 1.1 : ia O,
S |22 g C-CO, g soil organic C h™ "), T'is temperature in °C,
R 5 and B and k are the exponential fit parameters describing the
E 5 v intercept and slope, respectively, of the line describing the
=1 S g temperature-respiration relationship. This exponential equa-
2 OO D ¢t O™ 2 g . . .
FE EEEEEE T PR I s tion accurately described the data obtained for each sample
=2 -T T o =g (** > 0.95 in all cases). We used Q, instead of  to describe

" = the temperature sensitivity of decomposition because Qg

=1 . . .
= " LRRRRERRny |8 % values are more st.ralghtforward to interpret. Qo is
B S888L829288 E = calculated from equation (2),

. 2% .

. S £ 10
fo|ennsnceess | EE Qo=e 2
Ef|lS¥ITtwwtsmn | 2B ) .
S [rooomeeean | 87 12] We used the parameter B as an index of relative

€5 . . P . . .

ey organic C quality, the fraction of the total soil organic C

Scc<<S55 Py § £ pool that can be mineralized over a given period of time [see
SULNUNLBD DD s 1 i
LRV 2% | o Flgrer et al., 2005]. The parameter B provides a r(?bust
Sssss<<<ss |28 estimate of soil organic C bioavailability from soils incu-
gl ¢ azzZz dededZZ | 57 bated under controlled conditions. While conventional in-
Gl §§§§§5 == _f§§ §~§ dices based on elemental ratios or C fractions, such as
= S| = Q22 dgsess |55 lignin:N or C:N ratios, are often used to estimate carbon
g g 23583333 |E£8 quality in long-term litter decomposition studies [Hobbie,
£ N EE 1996], these indices are not useful estimators of organic C
g BRAARL S>> R 0 . . X
8 @ ceea g g quality in mineral soils and they are not good predictors of
- &£ organic C availability at specific points in time [Fierer et al.,
2e=glacaomrmamea |57 2005]. The measurement of the specific rate of microbial
= 2Ol a0 ¢ = : : : 173 7 : ’ :
El2ClvbhannhnhEEES> > E respiration, as done here, is a type of ““biological” fraction-
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Table 2. Q; and B Values for the Soils Included in This Study With the Soils Grouped Into General Ecosystem Categories®

Ecosystem Type Number of Soils Range of B Values Average B Range of Q;, Values Average Qo
Boreal Forest/Tundra 7 0.5-5.5 2.6 (0.6) 24-32 2.7 (0.1)
Humid Temperate Forest 20 0.4-5.5 1.6 (0.4) 24-35 2.9 (0.1)
Humid Temperate Grassland 18 0.2-3.8 1.6 (0.3) 2.6—4.6 3.1 (0.1)
Dry Forest 7 0.3-6.0 2.5 (0.6) 22-38 2.8(0.2)
Dry Grassland/Shrubland 18 0.5-16.3 5.0 (1.0) 23-4.1 2.9 (0.1)
Tropical Forest/Grassland 7 0.3-1.8 0.9 (0.2) 2.9-4.0 3.3(0.2)
All Soils 77 0.2-16.3 2.6 (0.3) 2.2-4.6 3.0 (0.1)

“Standard errors of the mean Q;( and B values are indicated in parentheses.

ation of soil organic carbon pools and remains the most
accurate method for estimating substrate availability to soil
microorganisms at any given point in time [Robertson and
Paul, 2000].

[13] Reichstein et al. [2005] have illustrated that, for an
individual set of data points, the error terms for B and Q,
will be negatively correlated due to inherent statistical
model properties [see also Draper and Smith, 1981]. If
we had estimated B and Q;o separately using replicate
samples, this autocorrelation would be removed. However,
we do not expect the existence of this autocorrelation to
affect the results reported here since B and Q, are estimated
from 77 independent data sets (one data set for each of the
soil samples included in this study). There is no a priori
expectation that Q¢ and B should be correlated across the
range of soils tested.

2.5. Statistical Analyses

[14] Soil and site variables with non-normal data distri-
bution were log-transformed prior to performing analyses.
Normality pretransformation and posttransformation was
checked with quantile plots. All statistical analyses were
conducted using Systat [Systat, 2000]. Correlations between
measured soil variables and Qo values were examined
using linear regression analyses. Correlations and the
corresponding residuals were checked graphically to screen
for possible nonlinear correlations. Multivariate models
were compared using the Akaike information criteria
[Burnham and Anderson, 2002], a model selection tech-
nique balancing model fit and parsimony.

3. Results

[15] Across all soils, the average measured Q,, value was
3.0 (median = 2.9), but the range in Q( values (2.2—4.6)
was considerable (Table 2). In general, soils collected near
one another had similar Q;( values (Table 1), though this
was not always the case (e.g., the soils from Toolik Lake,
Alaska). We grouped the soils into general vegetation
categories (grassland, coniferous forest, deciduous forest,
and shrubland) and found no significant differences in the
average Qqos across these broadly defined vegetation cate-
gories (P = 0.20). There were differences in measured Qg
values across ecosystem types (Table 2) but these differ-
ences were not significant (P = 0.08). While the sample
sizes were relatively small (N = 7 in both cases), soils from
tropical ecosystems had the highest average Qi (3.3) with
soils from polar and tundra ecosystems having the lowest
average Qi (2.7) of the six ecosystem categories.

[16] Of all the soil and site variables measured, only two
variables were significantly correlated with Q;, (Table 2):
relative substrate quality (B from equation (1)) and the mean
monthly temperature for the sampling month (MMT).
Individually, relative substrate quality and MMT explained
44% and 17%, respectively, of the variability in Q,( values
across all soils (Figure 1 and Table 3). Relative substrate
quality was negatively correlated with Q,(; decomposition
in soils with organic C pools of lower lability was more
temperature sensitive than decomposition in soils with
abundant mineralizable organic C (Figure la). MMT was

a .
4.5 1 y =-0.3(x) + 3.10
o #=0.44
[
—_ 4.0 1 ° P <0.001
T
o
o
3]
o) 3.5 T
8
o
Z
o 3.0 1
(¢}
2.5
2.0 . ; . .
2 -1 0 1 2 3
In (B)
451 y=0.03(x)+2.41 ¢
=017
P<0.01 ° .
—~ 4.0 1 . ° °
' o
o
(3]
[} 35 T
8
o
Z
> 3.0 1
(¢}
2.5
2.0 ; . . .
5 10 15 20 25 30

MMT for sampling month (°C)

Figure 1. The relationship between measured Q;, values
and (a) the In of parameter B and (b) the mean monthly
temperature for the month the samples were collected. B is
an index of relative substrate quality and is obtained from
equation (1) (see section 2).
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Table 3. Linear Correlations Between Soil and Site Variables and Measured Q,, Values®

Soil/Site Variable

Range of Values Correlation with Qo 1

Relative substrate quality (B in equation (1))b
MMT for sampling month, °C

% silt + clay

CO, production rate,” g C-CO, g soil ' d!
Minimum MMT, °C

MAT, °C

Annual range in MMT, °C

C:N ratio

pH

Maximum MMT, °C

% organic C

Soil moisture deficit,” cm H,O yr~
Microbial biomass,” ig C-CO, g soil ™' d™'
Net N mineralization, g N g soil ' d ™!

1

0.2-16.3 —0.67°
6-28 0.41¢
8-84 0.34
0.5-23.1 —0.34
—23-22 0.30
—9-23 0.30
2-31 —0.25
4.6-37.7 —0.23
3.6-8.4 0.22
7-32 0.21
0.1-18.2 0.21
—411-108 —0.08
0.7-18.4 —0.07
—0.8-1.7 —0.02

“MAT, mean annual temperature; MMT, mean monthly temperature (historical averages); SMD, average annual soil
moisture deficit. Variables are listed in order of the strength of their correlation; except for the first two cases, no correlations

were significant at the P = 0.10 level.

®Values log-transformed in order to normalize data before performing correlation analyses.
“Correlation with Bonferroni-corrected significance at P < 0.001 level.
dCorrelation with Bonferroni-corrected significance at P < 0.01 level.

positively correlated with Q;o, as soils that experienced
higher average temperatures during the sampling month
tended to have higher Q;q values (Figure 1b). None of the
other climatic characteristics examined were significant
predictors of Q¢ (Table 3). Together, MMT and relative
substrate quality (B) could explain 53% of the variability in
Qo values (Q¢p = —0.26¥InB + 0.02*MMT + 2.7, r = 0.73,
P <0.001). The addition of other variables to the model did
not significantly improve model fit.

[17] Although the parameter B (from equation (1)) was
estimated from relatively short-term incubations (<24 hours,
see section 2), we observed a strong correlation ( = 0.98,
P < 0.001) between B values (log-transformed) and the
average rates of CO, production, (in pug C-CO, g soil
organic C~' h™', also log-transformed) measured over the
course of the 50-day microbial respiration assays. No other
soil or site characteristics measured here were significantly
correlated with B (P > 0.40 in all cases, data not shown).

4. Discussion
4.1. Variability in Q;,

[18] Across all soils the average Q;o value was 3.0.
However, the range in measured Qo values was reasonably
large (Table 1) and the assumption of a single “average”
Qo value is unrealistic. The large range in measured Qg
values is particularly striking considering that Qo values
were measured for an identical period of time and all of the
soils were adjusted to the same percentage of water holding
capacity. Other studies measuring microbial decomposition
under controlled conditions have also reported a high degree
of variability in measured Qo values between different
types of soil and litter [Fierer et al., 2005; Holland et al.,
2000; Kdtterer et al., 1998; Kirschbaum, 1995; Ross and
Cairns, 1978].

[19] The extreme sensitivity of biome-level soil C models
to changes in Q¢ has been highlighted by Townsend et al.
[1992] and Lenton and Huntingford [2003]. Our large range

in measured Q, values suggests that the use of a single Q¢ in
soil carbon models could lead to significant errors in estimat-
ing the sensitivity of SOM pools to climate change. If the
average Q is estimated correctly, variability in Q( values at
small spatial scales would have only a minimal affect on the
accuracy of models examining SOM dynamics over large
areas, where many ecosystem/soil types are integrated into a
single model. However, models examining SOM dynamics at
higher spatial resolutions (local or regional scales) may be
significantly improved by explicitly considering the variabil-
ity in Qo values and applying soil-specific Qo values
[Canadell et al., 2000; Burke et al., 2003]. Of course, since
Q0 is most strongly correlated with relative organic carbon
quality (the parameter B), a parameter that is most easily
measured in the laboratory, the determination of soil-specific
Qo values is no easy task. If methods can be developed to
more rapidly estimate B values across a range of soil types,
our ability to parameterize soil-specific Qo values will be
dramatically improved.

4.2. Qg and Organic Carbon Quality

[20] There was a strong negative relationship between the
relative quality of soil organic carbon and Q;, values across
the wide range of soils examined. SOM quality alone (the
parameter B) explained 44% of the variability in Qg
values (Table 3). This finding supports the carbon quality-
temperature hypothesis which predicts that the minerali-
zation of low-quality substrates will have a higher Q
than the mineralization of more labile substrates. The
inverse relationship between Qo and substrate quality
(which we define as microbial CO, production per unit
organic C) appears to be a general pattern, having been
observed in both experimental studies (Table 4) and modeling
studies [Hyvénen et al., 2005; Knorr et al., 2005].

[21] Here we used potential microbial CO, production as a
bio-assay to index C quality (B). The Bosatta and Agren
[1999] “carbon quality-temperature” hypothesis defines C
quality biochemically, as the number of enzymatic steps
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Table 4. Other Published Experimental Studies in Which an Inverse Relationship Between Measured Q;o Values and Substrate Quality

Has Been Observed®

Temperature Range in
Range of Qo Measured
Reference Study Characteristics Measurements Qo Values Description of Results

Time Course Studies

Fierer et al. [2005] 53-day incubation of 10°-30°C 2.1-34 significant relationships between Qo and
24 litter samples B with incubation time
Fang et al. [2005] 100-day incubation of 4 soils 4°-44°C 2.0-2.6 over the course of the incubation, respiration

rates decreased by ~60% and Qs
increased by ~10%

Variable Substrate Studies

Leifeld and Fuhrer [2005] 4 fractionated soils 5°-25°C 3-15 across the different soil fractions, Q;os were
inversely related to CO, production rate
Fierer et al. [2005] 24 grass litters 10°-30°C 2.1-34 generally strong relationship between B and Qo
across a range of litter types
Mikan et al. [2002] 5 arctic tundra soils 0.5°-14°C 4.6-94 strong relationship between B and Q,, (> = 0.94)
Fierer et al. [2003a] 6 soils from depth profile 10°-35°C 2.8-4.1 large decrease in B with soil depth corresponded to
significant increase in Qo
this study 77 soils 10°-30°C 2.2-4.6 significant inverse relationship between Qo and B

“Substrate quality is defined as microbial CO, production per unit total organic C. “Time course studies” are those studies in which an individual soil or
litter type was incubated over time and Q;o was measured at specific intervals during the incubation as substrate quality declined with time. “Variable
substrate studies” refers to those studies where Qo were values were determined simultaneously on >3 distinct litter or soil types. Because of
methodological differences between studies, we have not attempted to compare these studies in a quantitative manner.

required to mineralize the organic C to CO,. However, some
of the organic C pools in mineral soils are likely to be
protected from microorganisms (“‘stabilized”) by physico-
chemical mechanisms, such as adsorption to mineral surfaces
or inclusion inside aggregates. The means by which soil
organic C is protected from microbial mineralization is likely
to have a large effect on both B and Q;, of the particular
organic C pool being mineralized [Thornley and Cannell,
2001]. By defining C quality as the rate of microbial CO,
production per unit organic C, we are effectively combining
biochemically and physico-chemically protected C pools in
our estimation of B. If all of the organic C was biochem-
ically protected, we would expect the Q¢ and C quality
relationship to be stronger. Indeed, this may explain why
the correlations between C quality and Q;( appear to be
particularly robust in studies examining plant litters [Fierer
et al., 2005] and organic soils [Mikan et al., 2002], where
physico-chemical protection of organic C is limited. A more
detailed accounting of the C protection mechanisms in each
soil may improve our ability to predict the biochemical
lability of soil organic C pools and, consequently, the
temperature sensitivity of microbial CO, production in
soil.

4.3. Qqo and the Ambient Temperature Regime

[22] A modest though statistically significant portion
(17%, Table 3) of the variation in Q, values can be solely
explained by site climate characteristics, specifically the
MMT at the site for the month of sample collection, despite
the fact that all soils were exposed to ambient temperatures
during shipping and soils were equilibrated at 20°C for 10
days prior to the Q;o measurements. Since there is no
significant correlation between MMT and B (P > 0.5), the
apparent influence of MMT on Q) is independent of the B/
Q19 relationship. One possible explanation for this result is

that the microbial communities in each soil have adapted to
their antecedent temperature regime, the mean seasonal
temperature. We know that the temperature optima of
microorganisms can vary widely [Madigan et al., 1997]
and that microorganisms are able to adapt to the temperature
regime of a particular environment [Cooper et al., 2001;
Hahn and Pockl, 2005]. Therefore we might expect that
communities that are adapted to warm temperatures would
maximize their activities at higher mean temperatures than
those communities adapted to cooler temperatures. Like-
wise, communities adapted to high temperatures should
have lower activities (relatively) when exposed to low
temperatures than those communities adapted to cooler
temperature regimes. As a consequence of any thermoadap-
tation, we would expect communities adapted to higher
antecedent temperatures to exhibit higher Qs across the
range of temperatures tested (10°-30°C), than those com-
munities adapted to cooler temperatures, yielding the ob-
served relationship between MMT and Q;q. At this point,
this mechanism is merely hypothetical and further research
is necessary to determine the prevalence of thermoadapta-
tion by microbial communities and its role in determining
the temperature dependency of SOM decomposition.

4.4. Assay Methods and the Estimation of Qq

[23] For this study we estimated Q;, by incubating
replicate soil samples for less than 24 hours at five different
temperatures. The specific characteristics of the chosen Qg
assay method (incubation time, the range of temperatures,
parallel versus sequential incubations) can strongly influ-
ence estimates of Qq¢ [Burke et al., 2003; Leifeld and
Fuhrer, 2005; Mikan et al., 2002; Reichstein et al., 2000].
For this reason, we have not attempted to quantitatively
compare the Qo values reported here with the Q;q values
reported in other laboratory-based studies. However, it is
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important to mention some of the specific advantages and
limitations of the Q; assay used here.

[24] The short-duration incubation approach we used was
chosen to minimize changes in the sizes of organic C pools
over the course of Qpo assays. Longer incubations can
underestimate Qo because C pools are depleted over time
[Mikan et al., 2002]. Likewise, by simultaneously incubat-
ing separate replicate soil samples at each temperature, we
minimize changes in soil C pools that can occur when
individual soil samples are sequentially incubated at a range
of temperatures. In this study, temperature-induced shifts in
the sizes of soil C pools should have a minimal effect on
Qqo estimations. Even at the highest assay temperature
(30°C) the amount of soil organic C mineralized during
the incubation was relatively small (30 to 320 ug C-CO, g
soil organic C™1).

[25] With our methodology, Q¢ was measured at a single
point in time after soils were equilibrated for a 10-day
period so the reported Q¢ values will only reflect the
temperature sensitivity of the more labile soil organic
carbon pools. If the soils were equilibrated for a longer
period of time before measuring Q;(, we would expect the
estimated Qo values to be higher owing to an overall
decrease in C quality as the more labile C pools are depleted
over time. Only with incubations of longer duration can we
begin to understand the temperature sensitivities of more
recalcitrant soil organic C pools. Despite the limitations of
our “snapshot” method for measuring Q;q, the method
provides a controlled and replicable method of comparing
Q0s across a wide variety of soil types.

[26] Tt is also important to recognize that the apparent
temperature dependency of microbial decomposition may
not be equivalent in field and laboratory conditions. In the
field, factors such as soil moisture, nutrient availability, root
respiration, and C availability are likely to interact with
temperature [Gulledge and Schimel, 2000; Rustad et al.,
2000], potentially obscuring any relationship between C
quality and the Qo of microbial respiration. This may partly
explain the discrepancy between the median Q;q of 2.9
reported here and the median Q( of 2.4 for total soil CO,
efflux, as reported from a comprehensive survey of field-
based studies [Raich and Schlesinger, 1992]. Likewise, in
projecting these results to changes in temperature over
longer periods of time (years to decades), other factors that
may have an important influence on the temperature sensi-
tivity of decomposition, including shifts in C pools, shifts in
microbial community composition, and physico-chemical
stabilization reactions, will also need to be considered. This
work provides an approach for considering how the imme-
diate temperature sensitivity of microbial respiration in soil
changes as all those other factors shift over time.

4.5. Absolute Versus Relative Responses to
Temperature

[27] Here we show an inverse relationship between C
quality and Q;o. However, total C emissions from a soil are
a function of basal respiration, temperature sensitivity, and
total C stocks. Thus absolute changes in overall C respired
will be a function of all three of these variables. Here we
show that the relative (not the absolute) response of CO,
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production to temperature is greater for soils with low C
quality. However, because those soils with low C qualities
are likely to have lower basal rates of microbial CO,
production, a relatively large increase on a small basal level
(for a low-quality soil) may be a smaller absolute amount of
C respired than a smaller increase over a larger basal value
(for a high-quality soil). Additionally, absolute responses
should be driven by total C supply and soils vary enor-
mously in the sizes of their total C stocks. This distinction
between absolute and relative responses may explain why
soil warming experiments [Luo et al., 2001; Oechel et al.,
2000] have observed a decrease in the apparent temperature
sensitivity of respiration as labile C pools are depleted by
warming, lowering the absolute response of CO, production
to temperature [Knorr et al., 2005].

5. Summary

[28] To our knowledge, this study is the first to compare the
temperature dependence of microbial decomposition across a
wide range of soil types. Our goal was not to identify a single,
average Q,( value that best describes the temperature sensi-
tivity of soil microbial respiration across a range of ecosys-
tems. Rather, we focused on the variability in Q;( values and
the identification of those biotic and abiotic factors that
influence the temperature sensitivity of soil microbial respi-
ration. We found that by considering only two variables,
MMT and carbon quality (B), we could predict more than 50%
of the variability in Q;( values. The predictive power of this
model is impressive considering that the soils included in this
survey represent a broad range of soil and site characteristics.
This work represents an important first step toward under-
standing the fundamental mechanisms governing the temper-
ature dependence of SOM decomposition.
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