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Abstract The storage and cycling of soil organic

carbon (SOC) are governed by multiple co-varying

factors, including climate, plant productivity, edaphic
properties, and disturbance history. Yet, it remains

unclear which of these factors are the dominant

predictors of observed SOC stocks, globally and
within biomes, and how the role of these predictors

varies between observations and process-based mod-

els. Here we use global observations and an ensemble
of soil biogeochemical models to quantify the emer-

gent importance of key state factors – namely, mean

annual temperature, net primary productivity, and soil

mineralogy – in explaining biome- to global-scale

variation in SOC stocks. We use a machine-learning
approach to disentangle the role of covariates and

elucidate individual relationships with SOC, without

imposing expected relationships a priori. While we
observe qualitatively similar relationships between

SOC and covariates in observations and models, the

magnitude and degree of non-linearity vary substan-
tially among the models and observations. Models

appear to overemphasize the importance of tempera-

ture and primary productivity (especially in forests
and herbaceous biomes, respectively), while observa-

tions suggest a greater relative importance of soil

minerals. This mismatch is also evident globally.
However, we observe agreement between observa-

tions and model outputs in select individual biomes –
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namely, temperate deciduous forests and grasslands,

which both show stronger relationships of SOC stocks

with temperature and productivity, respectively. This
approach highlights biomes with the largest uncer-

tainty and mismatch with observations for targeted

model improvements. Understanding the role of
dominant SOC controls, and the discrepancies

between models and observations, globally and across

biomes, is essential for improving and validating
process representations in soil and ecosystem models

for projections under novel future conditions.

Keywords Soil carbon ! Microbial models ! Global
change ! Earth system models ! Global databases !
Model benchmarking ! Machine learning

Introduction

Soil organic matter is the largest terrestrial pool of
actively-cycling carbon, with the potential for large

carbon-feedbacks in response to climate and land-use

change (Friedlingstein et al. 2014; Todd-Brown et al.
2014; Wieder et al. 2018). The storage and persistence

of soil organic carbon (SOC) exhibit considerable

spatial heterogeneity and are governed bymultiple key
factors, including climate, plant productivity, edaphic

properties, and disturbance history (Doetterl et al.

2015; Jackson and Caldwell 1993; Jackson et al. 2017;
Rasmussen et al. 2018; Sollins et al. 1996). However, it

remains unclear which of these predictors dominate in

distinct biomes and across spatial scales. Furthermore,
as soil biogeochemical models continue to evolve,

benchmarking techniques that validate not only the soil
carbon stocks, but also the environmental sensitivity of

soil carbon pools are increasingly needed (Sulman

et al. 2018; Wieder et al. 2019a).
Soil biogeochemical models vary widely in struc-

ture and, consequently, in predicted carbon stocks and

response to future perturbations (Abramoff et al. 2018;
Georgiou et al. 2017; Li et al. 2014; Sulman et al.

2018). For decades, soil and ecosystem model devel-

opment largely reflected traditional ideas of inherent
chemical recalcitrance as a dominant control, and,

consequently, the role of plant productivity and

climate in regulating SOC storage (Schmidt et al.
2011; Wang et al. 2010). In recent years, however,

emerging ideas place a growing emphasis on the

importance of microbial activity and mineralogical
properties (Cotrufo et al. 2013; Dwivedi et al. 2019;

Grandy and Neff 2008; Lehmann et al. 2020) that have

since been incorporated explicitly in process-based
soil carbon models (Allison et al. 2010; Robertson

et al. 2019; Sulman et al. 2014; Wang et al. 2013;

Wieder et al. 2015a, b). Representing these evolving
theories in mathematical models generates novel

emergent behavior and alternative hypotheses about

the relative importance of key state factors and their
interactions. To adequately compare such models, it is

important to recognize that there are numerous sources

of uncertainty that can cause apparent downstream
divergences (Sulman et al. 2018). Thus, it is helpful to

force models with identical inputs and environmental

conditions when comparing SOC stocks and their
response to perturbations (e.g., within a model testbed;

Wieder et al. 2018; Ahlström et al. 2017), to reduce

sources of uncertainty that may confound the inter-
pretation of results.

While the global distribution of SOC stocks may

look reasonably similar across models and measure-
ments (Fig. 1), it is difficult to diagnose where the

models predict correctly and whether they do so for the

right reasons. Indeed, recent studies that compare SOC
stocks from models against long-term field manipula-

tions have concluded that there are still large uncer-
tainties in both the models and observations, and that

novel observational syntheses and benchmarking

techniques are needed (Sulman et al. 2018; Wieder
et al. 2019b). Diagnosing model temperature and

moisture sensitivities, for example, can be an infor-

mative exercise for parameterizing and improving
model climate sensitivities (Abramoff et al. 2019;
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Koven et al. 2017; Wieder et al. 2018). To examine a

broader suite of controls that includes soil mineralogy

and plant productivity, however, requires novel diag-
nostics. We also note that global soil data products

used for model comparisons and benchmarking are

often statistically-derived themselves (i.e., extrapo-
lated from point observations) and may not carry

forward the same underlying relationships with key

environmental controls (Batjes 2016; Hengl et al.
2014). Therefore, it is critical to explore the environ-

mental controls of SOC stocks in soil profiles, in

addition to the controls of SOC stocks in commonly
used global observationally-derived data products and

biogeochemical models. Furthermore, dominant pre-

dictors may vary geographically across biomes in
observations and biogeochemical models.

Here, we present a novel benchmarking approach

that leverages machine-learning-based diagnostics.
We explore key predictors of SOC stocks and how

they differ between (i) soil profiles, (ii) observation-

ally-derived data products, and (iii) biogeochemical
models, globally and within biomes (Fig. 1). Specif-

ically, we focus on climate, vegetation, and miner-

alogical controls that were present in all of the
biogeochemical models compared in this study –

namely, mean annual temperature (MAT), net primary

production (NPP), and soil clay and silt content (i.e.,
soil texture; TEX). We anticipate that the predictabil-

ity of SOC stocks with these select predictor variables

will be lower for soil profiles and observationally-

derived data products, compared to outputs derived

from biogeochemical models that have an imposed

underlying structure. Models represent SOC dynamics
as a function of only a select few input variables, and

consequently model output may depict a lower

variability in SOC stocks under a given set of
environmental conditions compared to field measure-

ments. Indeed, while other environmental controls are

likely important for explaining SOC variability in field
measurements (e.g., pH, precipitation, fire, nutrients),

they are not yet incorporated into all of the soil

biogeochemical models presented herein and are thus
not compared in this benchmarking analysis. Evalu-

ating SOC stocks and their dominant controls in global

scale models is a critical step towards improving the
understanding, model representation, and projection

of factors controlling soil carbon persistence and

potential responses under environmental change.
Given temporal limitations in broad-scale SOC mea-

surements, novel diagnostics using spatial gradients

present opportunities to explore environmental sensi-
tivities and long-term responses to perturbations.

Methods

Global observations

In this study, we used two types of observational and

observationally-derived datasets: (i) a compilation of
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Fig. 1 Soil organic carbon observations and observationally-
derived data products (a, b, c) and process-based soil model
outputs (d, e, f) used in this study. Observations are from the
a ISRIC WoSIS database soil profiles, b Harmonized World
Soil Database (HWSD), and c Northern Circumpolar Soil

Carbon Database (NCSCD) adjusted HWSD. Model outputs
are from the d CASA-CNP, e MIMICS, and f CORPSE soil
biogeochemical models. Soil organic carbon (SOC) stocks are
shown for all globally gridded data products and soil model
outputs
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soil profile measurements and (ii) observationally-
derived gridded soil data products. Specifically, the

ISRIC global soil database (World Soil Information

System, WoSIS) was used for soil profile measure-
ments and corresponding climate variables

(n[ 10,000 profiles) (Batjes 2009, 2016) (Fig. 1).

For each soil profile, we summed SOC stocks to 1 m,
and excluded profiles that were shallower than 80 cm,

to best match the 1 m depth of the gridded soil data

products and model outputs. For gridded soil data
products, we used the Harmonized World Soil

Database (HWSD) at 0.5" x 0.5" resolution (Wieder

et al. 2014b), but also ensured that our results were
robust to the selected resolution (Table 1). Given that

HWSD SOC stocks may be biased at high latitudes

because of fewer observations, we also used a
combined gridded data product where the Northern

Circumpolar Soil Carbon Database (NCSCD) was

used to replace HWSD values where overlap occurs
(Hugelius et al. 2013). In our analyses, this product is

called the NCSCD-adjusted HWSD (Fig. 1).

For gridded observational data we used soil texture
(TEX; i.e., clay and silt content) from the HWSD at

0.5" x 0.5" resolution. For the soil profiles, clay and silt
content were reported directly in WoSIS and we used
the corresponding profile averages in our analyses.

Estimates of plant productivity were derived as 10-yr

averages (2000–2010) from the MODIS net primary
productivity (NPP) product at 0.5" x 0.5" resolution

and at soil profile locations (Koven et al. 2017; Zhao

et al. 2005). We used satellite-derived NPP estimates
for all observational products in this analysis, but note

that our findings were qualitatively insensitive to the

choice of NPP, including using simulated NPP from
the biogeochemical testbed forcing as used for the

model output. Mean annual temperature (MAT) was

estimated as a 10-yr average (2000–2010) from the
CRU dataset at 0.5" x 0.5" resolution and at soil profile
locations (Harris et al. 2014). For a land classification

map, we used the MODIS MCD12C1 landcover
product for year 2010 at 0.5" x 0.5" resolution (Friedl

et al. 2010).

Models and simulations

We explored the primary controls of three global-scale
soil carbon models: CASA-CNP (Carnegie-Ames-

Stanford Approach model; Potter et al. 1993; Wang

et al. 2010), MIMICS (MIcrobial-MIneralization
Carbon Stabilization model; Wieder et al. 2015b),

and CORPSE (Carbon, Organisms, Rhizosphere, and

Protection in the Soil Environment model; Sulman
et al. 2014) (Fig. 1; Table 1). These soil models form

the foundation of the soil biogeochemical testbed

(Wieder et al. 2018) and were chosen to represent
different mechanistic representations actively used in

global land models. We briefly describe the testbed

and highlight features of each soil model, but refer
readers to the papers above for more detailed

Table 1 Comparison of scales and predictability of soil organic carbon stocks from observations (soil profiles, HWSD, NCSCD adj.
HWSD) and biogeochemical models (CASA-CNP, MIMICS, CORPSE)

Type Scale Percent of variance
explained by RF a

References

Soil profiles Observation 1 m 9 1 m 26% WoSIS (Batjes 2009, 2016)

HWSD Observation-derived 0.5" 9 0.5"
1.9" 9 2.5"

58% Wieder et al. (2014b)

NCSCD adj. HWSD Observation-derived 0.5" 9 0.5" 53% Hugelius et al. (2013); Koven et al. (2017)

CASA-CNP Model 1.9" 9 2.5" 63% Wang et al. (2010)

MIMICS Model 1.9" 9 2.5" 81% Wieder et al. (2014a, 2015b)

CORPSE Model 1.9" 9 2.5" 53% Sulman et al. (2014)

See relevant publications and technical documentation for further details on the data and model details (Wieder et al. 2018)
aRandom Forest (RF) models for each observation/model source of soil organic carbon (SOC) as a function of mean annual
temperature (MAT), net primary production (NPP), and soil texture (TEX). Out-of-sample percent variance explained averaged over
an ensemble of RF models with bootstrapped sampling
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descriptions regarding specific model assumptions,
structures, and parameterizations.

Our analysis used soil carbon stocks that were

simulated from soil models in the biogeochemical
testbed. All three soil carbon models in the testbed

were forced with identical inputs and environmental

conditions, thereby isolating the effect of underlying
structural (and associated parametric) uncertainty. The

testbed simulations used daily air temperature, gross

primary production, soil temperature, and soil mois-
ture that were generated by the Community Land

Model (CLM version 4.5). The CLM4.5 simulations

used satellite phenology and atmospheric forcing from
the CRU-NCEP climate reanalysis from 1901 to 2010

(see Oleson et al. 2013). These simulations generated

globally-gridded, daily data that were needed to run
the CASA-CNP vegetation model (Randerson et al.

1996; Wang et al. 2010). Although CASA-CNP can

simulate coupled carbon, nitrogen, and phosphorus
biogeochemistry, here we used the carbon-only ver-

sion of the model. The vegetation model in CASA-

CNP calculates autotrophic respiration fluxes, alloca-
tion of carbon to different plant tissues, and the timing

of senescence and litterfall carbon inputs to the soil

models (CASA-CNP, MIMICS, and CORPSE). Thus,
in these carbon-only simulations, the soil models

experienced identical timing and magnitude of litter

inputs and soil abiotic conditions (temperature, mois-
ture, and texture). Additional details for the simulation

are described in (Wieder et al. 2018, 2019a).

Litterfall inputs provide fresh carbon substrates into
litter pools that decompose into soil carbon pools in

each model. CASA-CNP follows a conventional

decomposition scheme that uses first-order decay of
each carbon pool. In MIMICS and CORPSE, litter and

soil decomposition occur when organic matter passes

through one (CORPSE) or one of two (MIMICS)
microbial biomass pools before (re)forming soil

carbon, with rates of decomposition determined by

substrate availability and the size of microbial biomass
pools. Thus, MIMICS and CORPSE explicitly repre-

sent soil microbial activity and consider microbial
interactions with the surrounding physicochemical

soil environment. In all three models, the decompo-

sition of organic matter follows temperature-sensitive
kinetics, although the specific parametrization of each

model results in distinct emergent temperature

sensitivities of SOC turnover (see Wieder et al.
2018). All three models in the testbed assume that

protected C pools are either inherently resistant to

decomposition (e.g., long turnover times reflecting
theories about the inherent chemical recalcitrance of

passive C in CASA-CNP) or have restricted access to

microbial decomposers (as in the protected pools
simulated by MIMICS and CORPSE). Despite this

distinction in theory, all three models in the testbed

also use soil texture as a proxy that mediates the
persistence of this passive or protected organic matter

(Bailey et al. 2019; Rasmussen et al. 2018). Soil

carbon stocks simulated by each model – CASA-CNP,
MIMICS, and CORPSE – total 1380, 1420, and 1720

Pg C globally (0-100 cm depth; 10-yr average from

2000 to 2010), respectively, and, broadly, have similar
spatial distributions (Fig. 1; Wieder et al. 2018).

Machine learning emulators and analyses

We used statistical modeling to identify key predictors

influencing SOC variability and explored a suite of
approaches, including multivariate linear regressions,

gradient boosting machines, and random forests

(Fig. S1). We trained the models using SOC content
and corresponding predictors—here, MAT, NPP, and

TEX—for each data source, globally and across land

cover types. The random forest (RF) models are
reported here, with results from the multivariate linear

regressions shown in the supplement (Fig. S2;

Table S1). For the RF results, the percent variance
explained (on independent test data, with a 75 - 25

train-test split; Fig. S3-S5) and variable importance

scores were averaged from an ensemble of 10 random
forests (400 decision trees each) with bootstrapped

sampling, which were sufficient for convergence and

stable model results. All RF analyses were performed
using the R package randomForest (version 4.6–12)

(Breiman 2001; Liaw and Wiener 2002).

Variable importance scores depict the degradation
in model performance, i.e., the increase in mean

squared error (MSE), following the exclusion of a
given predictor from the RF model and were normal-

ized to sum to 1. Namely, in the case of two

hypothetical predictors xj and xk, the variable impor-

tance (VI) of predictor xk can be written as
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VIk ¼
DMSEk

DMSEk þ DMSEj

¼
MSE xj

! "
$MSE xj; xk

! "

MSE xj
! "

$MSE xj; xk
! "# $

þ MSE xkð Þ $MSE xj; xk
! "# $

ð1Þ

and that of predictor xj can be written as

VIj ¼
DMSEj

DMSEk þ DMSEj

¼
MSE xkð Þ $MSE xj; xk

! "

MSE xj
! "

$MSE xj; xk
! "# $

þ MSE xkð Þ $MSE xj; xk
! "# $

ð2Þ

where DMSEk is the increase in mean squared error

when xk is removed from the RF model compared to

the model with all variables included, and analogously
for DMSEj with the removal of xj. This increase in

mean squared error when a given variable is removed
means that, in the case of xk for example, DMSEk [ 0

since MSE xj
! "

[MSE xj; xk
! "

, where MSE xj
! "

is the

mean squared error when xk is removed from the RF

model and MSE xj; xk
! "

when all variables are

included. The variable importance scores then sum

to 1 across predictors; that is, VIk þ VIj ¼ 1 in the

example above. The importance ranking is linear, so it

is preserved in the normalization. Importance scores
reflect how important each predictor is in explaining

the spatial variability of SOC for each data source,

where a higher score signifies a greater importance
(Figs. S6-S8).

Partial dependence relationships were used to

explore the effect of each climatic and edaphic
predictor variable on SOC stocks from each data

source, while the other predictor variables were held

constant at their mean value. These relationships
emerged from the RF emulators, without imposing

expected relationships a priori. For comparison, we

also include results from a multivariate linear regres-
sion (Fig. S2; Table S1), which show similar qualita-

tive relationships without the potential for emergent

non-linearities. Standardized regression beta coeffi-
cients are given for the multivariate linear regressions

from each data source, where the underlying data have

been standardized so that the variances of dependent
and independent variables are equal to 1. This allows

the comparison of regression coefficients on the same

scale. However, the empirical and modeled relation-
ships are known to be non-linear for given predictors

(e.g., with temperature), and thus we focus our study
on these results and urge the adoption of methods that

allow non-linearities to emerge.

Biome-specific analyses were conducted on a
subset of the global datasets for each data source.

Using the MODIS MCD12C1 landcover product

(Friedl et al. 2010) for classification, we first grouped
forest (deciduous/evergreen broad/needleleaf and

mixed forests; i.e., IGBP land classes 1 to 5) and

herbaceous (savannas and grasslands; i.e., IGBP land
classes 9 and 10) biomes for broad landcover

comparisons, with the HWSD and NCSCD-adjusted

gridded data products and biogeochemical model
output. We then explored underlying biomes within

these broad categories (Fig. S6-S7). We excluded the

soil profiles from these biome-specific analyses due to
low predictability (variance explained\ 20 %) and

higher uncertainty in landcover classification, focus-

ing instead on the gridded data products and biogeo-
chemical model outputs (Fig. S6-S7). We trained

random forest models on each data subset to learn the

role of the underlying climatic and edaphic predictors
on SOC stocks, and compared the percent variance

explained and variable importance for each biome

subset across the data sources.

Results and Discussion

Predictability and variance explained

The predictability of SOC varies substantially

between observations and process-based models and

across scales. Indeed, using random forest models with
key state factors—namely, MAT, NPP, and TEX—to

predict SOC from different sources showed a range of

variance explained, from 26 % for global soil profile
measurements up to 81 % for the MIMICS model

(Table 1). The soil profile measurements were taken at

the plot-level and exhibited greater heterogeneity due
to fine-scale controls (e.g., proximity to vegetation,

topographic wetness, soil aggregation; Wiesmeier
et al. 2019) that are often not included in broad-scale

analyses or models. As a result, the predictability of

such SOC measurements is often lower (Doetterl et al.
2015; Hengl et al. 2014, 2017)—here, only 26 % of

the variance in soil profiles is explained by MAT,

NPP, and TEX using a random forest model, indicat-
ing that important controls at this plot-scale are still
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missing and that local conditions that drive SOC
accumulation may not be well-matched with the

relatively coarse spatial scales of MAT and NPP.

Future studies should thus consider using finer-scale
observationally-derived products of covariates, when

feasible and available. Furthermore, other fine-scale

controls (e.g., pH, exchangeable calcium,
extractable iron and aluminum, among other proper-

ties) are important in explaining the variability in SOC

across soil profiles (Heckman et al. 2020; Nave et al.
2021; Rasmussen et al. 2018), but these controls are

not yet incorporated in most biogeochemical models

and, therefore, could not be compared herein.
In contrast, observationally-derived data products

(e.g., HWSD and NCSCD-adj. HWSD) and process-

based biogeochemical models have imposed underly-
ing structures that rely on fewer input variables and are

more easily learned by a random forest algorithm.

Indeed, these gridded observational and model prod-
ucts exhibit less fine-scale heterogeneity in SOC

stocks than that seen in soil profile measurements.

Using a random forest model for each of the obser-
vational and biogeochemical model products globally,

the same three covariates – MAT, NPP, and TEX –

explained 58 and 53 % of the variance in the HWSD
and NCSCD-adj. HWSD versus 63 %, 81 %, and

53 % in the CASA-CNP, MIMICS, and CORPSE

model outputs, respectively (Table 1). The pre-
dictability of SOC also varied between individual

biomes and broad biome classifications (Fig. S4-S5).

For example, temperate deciduous broadleaf and
evergreen needleleaf forests showed greater pre-

dictability than tropical evergreen broadleaf forests,

in both observational data products and process-based
models (Fig. S5).

While we focused our analyses on the more

parsimonious RF model that included MAT, NPP,
and TEX, we briefly note that adding mean annual

precipitation (MAP) into the random forest models

only marginally increased the percent variance
explained by 1–5 % across the different data sources

globally (Table S2). The smallest difference was
observed for MIMICS, agreeing with the fact that the

version of the model used in the biogeochemical

testbed did not contain a soil moisture function and
thus did not use MAP as an input (Wieder et al. 2018).

Therefore, subsequent analyses focused on the envi-

ronmental variables (MAT, NPP, TEX) that were
direct inputs to all of the biogeochemical models.

Variable importance

In addition to overall SOC predictability across data
and models, we also explored the variable importance

and emergent relationships for MAT, NPP, and TEX

for each of the SOC sources. We found an apparent
mismatch between observations and biogeochemical

models, where TEX was the most important predictor

for the observations (both soil profiles and global
datasets), in contrast to MAT and NPP for the model

outputs (Fig. 2). This result also holds for clay as a

predictor, as often used in biogeochemical models
(Fig. S8; though only 48 % of the variance in HWSD

was explained). Furthermore, we note that the impor-

tance of MAT was higher in the NCSCD-adj. HWSD
compared to the HWSD alone, suggesting potential

differences in underlying temperature sensitivity and

freeze-thaw dynamics that are important to consider
when benchmarking biogeochemical models globally.

While biogeochemical models placed a higher

importance on both temperature and plant productivity
globally (Fig. 2), greater nuance exists at the biome-

level. In our RF emulators of the biogeochemical

model outputs, MAT stood out as the most important
variable in forests, whereas NPP was most important

in herbaceous biomes (Fig. 3). In contrast, TEX was

again the most important variable for HWSD in both
forest and herbaceous biomes (Fig. 3; Fig. S6), though

the NCSCD-adj. HWSD showed an increased impor-

tance of MAT for herbaceous biomes at high-latitudes
(Fig. 3; Fig. S6). The RFmodels performance in broad

forest and herbaceous land classes were comparable to

that of the global results (Fig. S4). Interestingly,
among individual biomes where the RF also achieved

similar performance to the global results (Fig. S5), we

find agreement between the observations and model
outputs in select biomes (Fig. S7). Namely, MAT had

high explanatory power in temperate deciduous

broadleaf and mixed forests and NPP had high
explanatory power in temperate grasslands. This

suggests that biogeochemical models can match

observations in select biomes (e.g., temperate forests
and grasslands), but targeted model improvements are

needed in biomes where observations and models

show divergent controls on SOC stocks (Fig. S6-S7).
These targeted improvements could include a closer

examination of model parameterizations in specific

biomes (for example, increasing mineralogical con-
trols or increasing/decreasing temperature
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dependencies) and the distribution of SOC among
different model pools. Modifications may also require

incorporating missing controls into biome-specific

model formulations or conducting additional

experiments and sampling campaigns in data-poor
regions to further inform parameterizations.

Predictive relationships

Mineralogical controls

Using random forest models trained on the observa-

tions and model output, we explored the dependence

of measured and modeled SOC on individual covari-
ates. These random forest models act as emulators of

the observations and biogeochemical models, allow-

ing us to explore individual relationships (i.e. partial
dependence plots) while controlling for all other

covariates. This method also allows for emergent

non-linearities without a priori imposed relationships.
We observed stark differences between the obser-

vations and biogeochemical models (Fig. 4). Both the

soil profiles and observational data products (HWSD
and NCSCD-adj. HWSD) showed a greater depen-

dence (steeper positive slope) on TEX (clay and silt

content) compared to the models (near zero or
negative slope; Fig. 4a; Fig. S2; Table S1). By

contrast, the soil biogeochemical models were more

sensitive to MAT and NPP, compared to the observa-
tional products. Though the soil biogeochemical

models do contain some representation of mineral-

organic associations (where MIMICS and CORPSE
do so in a more explicit, mechanistic way), the
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Variable Importance
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NCSCD adj. 
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MAT
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NPP

Fig. 2 Variable importance for soil organic carbon (SOC)
stocks globally, using Random Forests (RFs) that learned the
SOC from observations and biogeochemical models with net
primary productivity (NPP), mean annual temperature (MAT),
and soil texture (TEX). Results shown are averaged over an
ensemble of RFs with bootstrapped sampling, and box plots
depict the 95 % confidence intervals (error bars) and first and
third quartiles (boxes). Variable importance equal to 1 indicates
the highest importance
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Fig. 3 Variable importance for soil organic carbon (SOC)
stocks in a forest and b herbaceous biomes, using Random
Forests (RFs) that learned the SOC from observations and
biogeochemical models with net primary productivity (NPP),
mean annual temperature (MAT), and soil texture (TEX).
Forests included deciduous/evergreen broadleaf/needleleaf and

mixed forests, and herbaceous biomes included grasslands and
savannas. Results shown are averaged over an ensemble of RFs
with bootstrapped sampling, and box plots depict the 95 %
confidence intervals (error bars) and first and third quartiles
(boxes). Variable importance equal to 1 indicates the highest
importance
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importance of TEX appeared insignificant in explain-
ing SOC content globally. Rather, climate and vege-

tation seemed to play a predominant role in driving the

distribution of SOC in soil biogeochemical models.
This discrepancy motivates a closer look at how

mineralogical controls are implemented in each bio-

geochemical model and the resulting distributions of
SOC stocks between modeled pools.

Temperature sensitivity

Both observations and models showed the highest

SOC in grid cells with colder MAT (Fig. 4b). Indeed,
SOC had the highest temperature sensitivity (steeper

slope) in colder regions (MAT\ 0 "C) and a lower

temperature sensitivity (shallow slope) in warmer
regions (MAT[ 10 "C) (Fig. 4b), corroborating

recent studies (Koven et al. 2017; Wieder et al.

2019a). This higher temperature sensitivity of SOC at
low MAT primarily occurs in high-latitude forests,

and therefore, a clear difference in temperature

sensitivity was seen across herbaceous (here grass-
lands and savannas) and forest biomes (Fig. 3;

Fig. S6). Without the NCSCD-adjusted values at high

latitudes, the HWSD data product on its own showed a
muted temperature sensitivity, far lower than that of

the soil profiles and biogeochemical models (Fig. 4b),

suggesting that the HWSD alone may not fully capture
the underlying temperature sensitivity that is needed to

benchmark biogeochemical models. Replacing the
high latitudes with the NCSCD data product, known to

be more accurate in those geographies (Hugelius et al.

2013; Koven et al. 2017), improved the emergent
temperature sensitivity such that it approached that of

the soil profiles.

While the soil biogeochemical models use similar
temperature functions, their parameterizations and

which fluxes or carbon pools they are applied to differ

between the models (Wieder et al. 2018). As a result,
the biogeochemical models exhibited a range of

temperature sensitivities (Fig. 4b). The degree of

temperature sensitivity of the soil profiles most closely
matched the MIMICS and CASA-CNP models

(Fig. 4b). CORPSE had the highest MAT dependence

(Fig. 4b), which may be due in part to its ceased
decomposition in frozen soils (Wieder et al. 2019a),

and is reflected by its higher SOC content at high

latitudes (Fig. 1).

Influence of plant productivity

Plant inputs are the main source of carbon to the soil

and, thus, plant productivity across biomes plays an

important role in carbon accumulation. We found that,
in both the observations and soil biogeochemical

models, SOC content exhibited a saturating relation-

ship with increasing net primary productivity (NPP;
Fig. 4c). However, the soil profiles and the

Fig. 4 Partial dependence relationships of soil organic carbon
(SOC) as a function of individual controlling factors, namely
a soil texture (TEX), b mean annual temperature (MAT), and
c net primary productivity (NPP). Machine-learning (Random
Forest; RF) derived global relationships of individual covariates

conditional on all other covariates being held constant at their
mean. RFs were trained on each observational dataset andmodel
output separately. Points show RF predictions; best fit lines
show 99 % confidence intervals on the relationship
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biogeochemical models showed a significantly higher
sensitivity (steeper increase) to NPP than the HWSD

data product. This suggests that underlying environ-

mental sensitivities seen in the soil profiles may not be
effectively represented in the HWSD data product, and

thus, care should be taken when using such data

products to benchmark soil biogeochemical models.
Indeed, the soil profiles showed a NPP sensitivity that

fell in the middle of those seen in the models;

specifically, at high NPP, the soil profiles showed a
lower sensitivity than CORPSE and higher sensitivity

than MIMICS and CASA-CNP, while at low NPP, the

soil profiles were less sensitive than all three of the
models (Fig. 4c). This qualitative difference in the

shape of the soil profile curve is interesting, and

further investigation with other datasets (especially
those with site-level NPP measurements) is warranted

for verification – especially given the low variance

explained for the soil profiles – and to understand the
root cause and potential implications for model

representations. It is important to note that gridded

NPP (and MAT) estimates may differ from the actual
conditions experienced by the soil profiles being

measured, as NPP can be highly variable at the site-

level within a grid cell. Elucidating the sensitivity of
long-term SOC storage to changes in plant inputs, and

to underlying site-level heterogeneity, is critical for

understanding potential feedbacks to land-use and
land-cover change globally.

Conclusions and implications

Our results suggest a potential mismatch between
observations and biogeochemical models in the

emergent role of environmental controls in explaining

SOC variability. Namely, MAT and NPP have the
most explanatory power for SOC stocks from the

biogeochemical models – CASA-CNP, MIMICS, and

CORPSE – and TEX has the least explanatory power.
In contrast, TEX has the most explanatory power for

SOC stocks among the observations, both at the soil
profile scale and in the global observationally-derived

data products (Fig. 2; Fig. S8). This mismatch moti-

vates a closer look at how mineralogical controls
modulate SOC persistence and microbial function in

biogeochemical models, and their resulting distribu-

tion of mineral-associated organic carbon, which

could improve projections of not only SOC stocks,
but also SOC ages and turnover times.

Furthermore, the covariate relationships observed

in soil profiles and observationally-derived gridded
data products were not always aligned (e.g., Fig. 4b-

c), indicating that gridded data products may not

effectively capture the underlying climatic and
edaphic controls of the measured soil profiles due in

part to upscaling uncertainty. The NCSCD-adj.

HWSD, however, was more closely aligned with the
soil profiles than was the HWSD alone, supporting

recent studies that preferentially use it for model

comparisons (Koven et al. 2017). Other gridded
observational products (Hengl et al. 2017) can also

be evaluated in this way to understand their effective

representation of emergent environmental controls.
This is an important step in validating observational

data products for future use as model benchmarks.

The overall predictability of SOC stocks from soil
profiles and observational data products was generally

lower than that of the biogeochemical models, glob-

ally and within select biomes (Table 1; Figs. S4-S5).
While other predictors are certainly important for

explaining the variability of SOC in soil profiles and

observational data products (Delgado-Baquerizo et al.
2017; Doetterl et al. 2015; Rasmussen et al. 2018),

these predictors are often not direct inputs into

biogeochemical model simulations and therefore can-
not be compared using the random forest emulator

approach presented here. However, further explo-

ration of the underlying, biome-specific and global
controls driving SOC variability in observations (e.g.,

metal oxides, nutrients, fauna, topography; also MAP

in Table S2) (Crowther et al. 2019; Doetterl et al.
2015; Rasmussen et al. 2018) is essential for motivat-

ing their incorporation in future process-based formu-

lations of soil biogeochemical models.
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