Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO₂ gradient in a C₃/C₄ grassland

H. MAHERALI¹, H. B. JOHNSON² & R. B. JACKSON^{1,3}

¹Department of Biology, Duke University, Durham, NC 27708, USA, ²USDA-ARS, Grassland, Soil and Water Research Laboratory, Temple, TX 76502, USA and ³Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA

ABSTRACT

In the present study the response of stomatal conductance (g_s) to increasing leaf-to-air vapour pressure difference (D)in early season C₃ (Bromus japonicus) and late season C₄ (Bothriochloa ischaemum) grasses grown in the field across a range of CO₂ (200–550 µmol mol⁻¹) was examined. Stomatal sensitivity to D was calculated as the slope of the response of g_s to the natural log of externally manipulated D (dg_s/dlnD). Increasing D and CO₂ significantly reduced g_s in both species. Increasing CO₂ caused a significant decrease in stomatal sensitivity to D in Br. japonicus, but not in Bo. ischaemum. The decrease in stomatal sensitivity to D at high CO₂ for Br. japonicus fit theoretical expectations of a hydraulic model of stomatal regulation, in which $g_{\rm s}$ varies to maintain constant transpiration and leaf water potential. The weaker stomatal sensitivity to D in Bo. ischaemum suggested that stomatal regulation of leaf water potential was poor in this species, or that non-hydraulic signals influenced guard cell behaviour. Photosynthesis (A) declined with increasing D in both species, but analyses of the ratio of intercellular to atmospheric CO_2 (C/C_a) suggested that stomatal limitation of A occurred only in Br. japonicus. Rising CO₂ had the greatest effect on g_s and A in Br. japonicus at low D. In contrast, the strength of stomatal and photosynthetic responses to CO₂ were not affected by D in Bo. ischaemum. Carbon and water dynamics in this grassland are dominated by a seasonal transition from C₃ to C₄ photosynthesis. Interspecific variation in the response of g_s to D therefore has implications for predicting seasonal ecosystem responses to CO₂.

Key-words: elevated CO₂; grassland ecosystems; stomatal conductance; stomatal sensitivity; vapour pressure deficit.

Abbreviations: g_s , stomatal conductance for water vapour; D, leaf-to-air vapour pressure difference; g_{sref} , g_s at D = 1 kPa; A, net photosynthetic rate; C_i/C_a , the ratio of intercellular to external CO₂ concentration; $-dg_s/dlnD$, stomatal sensitivity to D, based on the slope of the response of g_s to the natural log of D.

INTRODUCTION

As primary physiological controls on the terrestrial flux of water to the atmosphere, stomata have long been the subject of studies evaluating plant responses to global climate change. The expectation that stomatal conductance (g_s) will decline with an increase in atmospheric CO₂ concentration (Field, Jackson & Mooney 1995; Drake, Gonzalez-Meler & Long 1997) has several implications for plant and ecosystem function. Barring an increase in leaf area, the most immediate consequence of decreasing g_s is a reduction in terrestrial evapotranspiration (Field et al. 1995; Jackson et al. 1998). By limiting transpiration, stomatal closure can also improve plant water use efficiency and therefore indirectly influence productivity in terrestrial ecosystems (Polley *et al.* 1993). Several environmental factors influence g_s in addition to CO₂ concentration (Cowan 1977). Therefore, predicting g_s in future environments requires an understanding of how CO2 concentration and other environmental factors interact to influence stomatal behaviour (Medlyn et al. 2001; Wullschleger, Tschaplinski & Norby 2002).

Perhaps the most significant environmental variable controlling g_s is the difference in water vapour pressure between the inside and outside of leaves (D). Stomata typically close with increasing D, a response that is implicated in preventing excessive dehydration and hydraulic failure (Mott & Parkhurst 1991; Oren et al. 1999). A mechanistic understanding of the interactive effects of CO_2 and D on plant gas exchange is important because D varies temporally with climate and may increase during the next century with a greenhouse gas-induced global temperature increase of 1.5-4.5 °C (Kattenberg et al. 1996; Gregory, Mitchell & Brady 1997; MacCracken et al. 2001). Recent work indicates that growth at elevated CO₂ may reduce stomatal sensitivity to D (Bunce 1993, 1998; Heath 1998; Wullschleger et al. 2002). However, a mechanism by which this response occurs has not been identified. Based on a simple hydraulic model, Oren et al. (1999) predicted that in order to maintain constant leaf water potential and transpiration, stomatal sensitivity to D should be directly proportional to the magnitude of g_s . Therefore, a decrease in

Correspondence (present address): Hafiz Maherali, Department of Botany, University of Guelph, Guelph, ON, NIG 2W1, Canada. Email: maherali@uoguelph.ca

stomatal sensitivity to D that is correlated with CO₂induced reductions in the magnitude of g_s could be consistent with hydraulic regulation of stomatal function.

Changes in D may also influence the response of stomata to atmospheric CO₂ concentration (Morison & Gifford 1983). A reduction in g_s at high D may make stomata less responsive to increased CO₂ (Bunce 1998, 2000). Decreased stomatal sensitivity to CO2 could affect the stimulation of photosynthesis by high CO₂, potentially influencing productivity in arid and semi-arid regions in the future (Polley et al. 1993; Jackson et al. 1994; Owensby et al. 1999; Smith et al. 2000). In addition, predictions of reduced evapotranspiration and its influence on cloud cover and temperature at twice ambient CO₂ concentrations are based on the expectation of a 50% reduction in g_s (Henderson-Sellers, McGuffie & Cross 1995; Sellers et al. 1996). Thus, reduced stomatal sensitivity to CO_2 at high D may alter the expected response of climate to CO₂ on a global scale.

For some species, the response of stomatal conductance to CO₂ is particularly pronounced below the current ambient concentration (Maherali et al. 2002). Recent experiments indicate that the carbon and nitrogen dynamics of grasslands also respond more dramatically to increases in CO_2 from the Pleistocene (approximately 180 μ mol mol⁻¹; Petit et al. 1999) to the present concentration than from the present to future levels (Gill et al. 2002). Past CO₂ increases have been implicated in shifting the global distribution of C₃ and C₄ plants and increases in ecosystem productivity (Polley et al. 1993; Ehleringer, Cerling & Helliker 1997). Although carbon assimilation is affected by subambient CO₂ in both C₃ and C₄ plants (Anderson et al. 2001; Sage & Coleman 2001), comparatively little is known about stomatal responses to past atmospheric CO₂ concentrations and their interactions with environmental stresses such as increased D (Sage & Cowling 1999; Ward et al. 1999).

In this study, we examined the influence of atmospheric CO_2 concentration on stomatal responses to D using an experimental system that maintains a continuous gradient of CO₂ from 200 to 550 μ mol mol⁻¹ in the field (Johnson, Polley & Whitis 2000; Gill et al. 2002). A previous study in this C₃/C₄ grassland ecosystem reported 40-80% declines in g_s measured at optimal D (< 1.5 kPa) along the gradient for several species (Anderson et al. 2001). Based on the hydraulic model of Oren *et al.* (1999), we predicted that g_s in plants grown at elevated CO2 would be less sensitive to variation in D than those grown at subambient CO_2 . Because stomatal closure limits the uptake of CO₂, we also examined the sensitivity of net photosynthesis (A) to variation in D. Our grassland experimental system is dominated by C₃ photosynthesis early in the growing season and transitions to C₄ photosynthesis by the summer. To account for this functional change, we made measurements of the response of g_s to D on representative C_3 and C_4 grasses of this system. Changes in stomatal sensitivity to D have implications for the strength of plant responses to CO₂ (Morison & Gifford 1983; Seneweera, Ghannoum & Conroy 1998; Gunderson et al. 2002). Therefore we also examined how variation in D affected the response of g_s and net photosynthesis to the CO₂ gradient.

METHODS

Study site and experimental system

Our experiment was conducted in a grassland near the USDA-ARS Grassland, Soil and Water Research Laboratory in Temple, TX (31°05' N, 97°20' W). The site has been managed as grassland for the last 50 years and was last grazed by cattle in 1992. Soils are in the Austin black soil series, classified as a fine-silty, carbonatic, thermic Udorthentic Haplustoll with 35-55% clay in the top 40 cm (Johnson et al. 2000). To determine the potential for interspecific variation in responses to CO₂, we focused on two abundant grass species with different photosynthetic pathways: Bromus japonicus Thunb. ex Murr., a C3 annual grass and Bothriochloa ischaemum (L.) Keng, a C₄ perennial grass. Other species at the site include the forbs Solanum dimidiatum Raf., Solidago canadensis L. and Ratibida columnaris (Nutt.) Woot. & Standl. Mean annual precipitation (1913-99) is 877 mm and the mean minimum and maximum annual temperatures are 13.2 and 25.9 °C, respectively. C3 species are mostly active early in the growing season and C₄ species dominate by mid-summer.

Our experimental system consisted of two elongated chambers over parallel and adjacent plots of grassland. Each chamber was 60 m long, 1 m wide, and 1 m tall. Air introduced into one end of each chamber was progressively depleted of CO₂ by photosynthesis as it moved down the chamber by a blower. Desired CO₂ concentrations were maintained by automatically varying the rate of air flow. During daytime, the CO₂ gradient in one chamber (subambient chamber) ranged from 360 to 200 μ mol mol⁻¹, whereas the gradient in the second chamber (elevated chamber) ranged from 550 to 360 μ mol mol⁻¹. At night, CO₂ treatments were maintained at 150 µmol mol⁻¹ above daytime levels by reversing air flow and using respiratory CO₂ releases to create the gradient. Treatments began in May 1997 and operated each growing season (mid-February to mid-November) up to 2000.

The chambers were divided into 10 5-m-long sections, with a rubber-coated barrier extending to about 1 m deep into the soil along the sides of each chamber. Each section was enclosed in polyethylene film (which transmitted 85-95% of incident PPFD), with chilled-water cooling coils between sections. Air temperature and humidity were controlled at ambient levels by cooling and dehumidifying air before it entered each 5 m section of chamber. Each 5 m section was irrigated to match ambient rainfall through July 1999. Thereafter, water was applied to all sections in the amount required to equalize soil water content in sections at ambient CO₂ with that of adjacent open grassland as measured by neutron attenuation (Polley, Johnson & Derner 2002). During the drought years of 1999 and 2000, the total water applied to the chambers was 349 and 381 mm, respectively. Additional details of design, construction and operation of these chambers can be found in Johnson *et al.* (2000).

Steady-state gas exchange and responses to leaf-to-air vapour pressure difference

The consequences of CO₂ for stomatal responses to leaf-toair vapour pressure difference (D) were examined during the fourth growing season of the experiment. Steady-state leaf gas-exchange was measured at saturating irradiance with an open gas-exchange system (LI-6400; Li-Cor Inc., Lincoln, NE, USA) between 0900 and 1500 h central standard time. Incident irradiance during all measurements was provided by red-blue light-emitting diodes. Gas exchange was measured when each species was near its peak biomass, which was April 2000 for Br. japonicus and August 2000 for Bo. ischaemum (Anderson et al. 2001; Maherali et al. 2002). The youngest fully expanded leaf was sampled on three to four randomly selected plants per 5-m-long section at a minimum of six treatment CO₂ concentrations (six chamber sections). Stomatal conductance (g_s) was measured at saturating light levels of 1600 and 2000 μ mol m⁻² s⁻¹ for Br. japonicus and Bo. ischaemum, respectively. A Peltier cooling module maintained leaf temperatures at approximately ambient conditions (20-23 °C and 29-32 °C for Br. japonicus and Bo. ischaemum, respectively). We maintained leaf-to-air vapour pressure deficit (D) at levels that permitted the measurement of maximum g_s , which were 0.9-1.1 kPa for Br. japonicus and 1.4-1.6 kPa for Bo. ischaemum. To calculate g_s and intercellular CO₂ concentration (C_i) we used a boundary layer conductance of 4.86 mol m⁻² s⁻¹ for both species. Boundary layer conductance was calculated on the basis of leaf area and fan speed using the energy balance algorithms of the LI-6400. Leaf area was calculated from leaf dimensions.

To examine stomatal responses to *D*, we measured the response of g_s to a manipulation of *D* within the leaf cuvette. Once clamped in the cuvette, leaves were exposed to the light, *D*, and temperature levels described above and the respective growth CO₂ concentration. After steady-state conditions were achieved, the first measurement was taken and *D* was then increased by diverting a greater percentage of air through the desiccant (drierite). Stomatal conductance was recorded after steady-state was determined when the coefficient of variation of change in water vapour was <0.05% (generally after 20–30 min). The response of net photosynthesis (*A*) was recorded simultaneously with g_s .

Statistical analyses

To examine whether CO_2 treatments influenced the response of g_s to D, we used the analysis of repeated measures (ANOVAR) for physiological response curves (e.g. Potvin, Lechowicz & Tardif 1990) in SPSS 10.0 for Windows (SPSS Inc., Chicago, IL, USA). D was the within subjects factor whereas growth CO_2 was the between subjects fac-

tor. Differences in the slope of the response of g_s , A or the C_i/C_a ratio to D among growth CO₂ concentrations were determined by testing for an interaction between D and CO₂. Univariate (within subjects) tests of significance (at P = 0.05) are reported for each comparison. For descriptive purposes, all g_s , A and C_i/C_a versus D response curves were fitted with linear or quadratic least squares regression models. Quadratic models were only employed when they explained more (as determined by r^2 and P-values) of the variation in the data than linear models. Although means (± 1 SE) are presented in figures, all analyses were performed using individual plants.

To determine whether stomatal sensitivity to D varied with g_s (e.g. Morison & Gifford 1983; Oren *et al.* 1999), we fitted our data to the empirical function described in Oren *et al.* (1999):

$$g_{\rm s} = -m \times \ln D + b \tag{1}$$

where *m* and *b* are parameters generated by least-squares regression. The parameter *b* is defined as g_{sref} , or the reference g_{s} at D = 1 kPa and *m* is the stomatal sensitivity to *D*, or $-dg_{\text{s}}/d\ln D$. This equation was selected because it fitted our data well ($r^2 > 0.95$), and has been used to analyse the responses of g_{s} to *D* for a variety of species (Oren *et al.* 1999). The statistical significance of the relationship between $dg_{\text{s}}/d\ln D$ and g_{sref} was determined using least-squares linear regression.

Evaluation of empirical data with a hydraulic model

Although the signalling mechanism by which stomata respond to leaf-to-air vapour pressure difference is not known, empirical observations suggest that g_s responds to transpiration (*E*) (Mott & Parkhurst 1991), and may therefore be regulated by a feedback response to the water status of leaves as defined by leaf water potential. We evaluated whether observed differences in $-dg_s/dlnD$ across growth CO_2 concentrations in each species could be explained by hydraulic regulation of stomatal function. If the response of g_s to *D* is coupled to the maintenance of constant leaf water potential and transpiration under steady-state conditions, stomatal behaviour can be predicted using an Ohm's law analogy (Oren *et al.* 1999):

$$g_{\rm l} = (K_{\rm L}) \times (1/D) \times (\Psi_{\rm S} - \Psi_{\rm L}) \tag{2}$$

where g_1 is the leaf conductance to water vapour (the boundary layer conductance, g_{bl} , and g_s in series), K_L is the leaf specific hydraulic conductance of the soil-leaf pathway, and Ψ_s and Ψ_L are the soil and leaf water potential, respectively. Equation 2 was used to generate theoretical responses of g_s to D for each CO₂ concentration. K_L was manipulated to generate species-specific maximum g_1 values for each treatment CO₂ concentration. We used the appropriate range of D (e.g. 1–3.6 kPa for Br. japonicus; 1.5–4.0 kPa for Bo. ischaemum, Figs 1a & 2a) for each species. The equation was parameterized with g_{bl} used in gas exchange calculations and ($\Psi_s - \Psi_L$) was assumed to be

Figure 1. The response of mean (± 1 SE) g_s (a), A (b), and C_i/C_a (c) to D for Br. *japonicus* plants grown across a range of atmospheric CO₂. Symbols correspond to different growth CO₂ concentrations (μ mol mol⁻¹). Each data point represents the mean of three to five individuals.

equal to 1. Further details of these calculations are described in Oren *et al.* (1999). The data generated from Eqn 2 were fitted with Eqn 1 to calculate $-dg_s/dlnD$ and g_{sref} (g_s at D = 1 kPa) as described previously. We evaluated the predictions of the hydraulic model by comparing the magnitude of the theoretical slope between $-dg_s/dlnD$ and g_{sref} (Oren *et al.* 1999) with the slope generated from empirical

data. We tested whether the empirical slope differed statistically from the modelled slope using a two-tailed Student's *t*-test (Sokal & Rohlf 1995).

RESULTS

Stomatal conductance (g_s) declined non-linearly with increasing leaf-to-air vapour pressure difference (D) in the

Figure 2. The response of mean (± 1 SE) g_s (a), A (b), and C_i/C_a (c) to D for *Bo. ischaemum* plants grown across a range of atmospheric CO₂. Symbols correspond to different growth CO₂ concentrations (μ mol mol⁻¹). Each data point represents the mean of three to five individuals.

 C_3 Br. japonicus at all CO_2 concentrations (Fig. 1a; P < 0.001). A significant (P < 0.001) interaction between CO_2 and D in the ANOVAR indicated that the response of g_s to D differed across CO₂ treatments. The strongest stomatal responses to D occurred in plants grown at $<350 \ \mu mol \ mol^{-1}$ relative to those grown at $>350 \ \mu mol$ mol^{-1} . Net photosynthetic rate (A) also decreased with increased D (P < 0.001). The response of A to D differed across CO_2 concentrations (ANOVAR, $CO_2 \times D$ interaction, P = 0.04, Fig. 1b), with photosynthesis responding most strongly to increased D in plants grown at $>350 \,\mu$ mol mol⁻¹ CO₂. The ratio of intercellular to external CO₂ concentration (C_i/C_a) decreased with D at all CO₂ concentrations (Fig. 1c; P < 0.001). The response of C_i/C_a to D appeared to be the same regardless of growth CO₂ concentration, as determined by the lack of a significant $CO_2 \times D$ interaction (ANOVAR, P = 0.99).

Stomatal conductance decreased linearly with rising leafto-air vapour pressure difference (P < 0.001) in the C₄ Bo. *ischaemum* at all CO₂ concentrations (Fig. 2a). There was no CO₂ × D interaction (ANOVAR, P = 0.12), indicating that the responses of g_s to D were similar across growth CO₂. Net photosynthesis also decreased with rising D (P < 0.001), but the response of A of D was statistically similar at all growth CO₂ concentrations (ANOVAR, CO₂ × D interaction, P = 0.20, Fig. 2b). The C_i/C_a ratio was not affected by D (P = 0.45, Fig. 2c). This lack of response to D appeared to occur at all growth CO₂ concentrations (ANOVAR, CO₂ × D interaction, P = 0.49). To determine if stomatal sensitivity to leaf-to-air vapour pressure difference was influenced by the magnitude of g_s , we employed a model described by Oren *et al.* (1999) in which sensitivity is defined as the slope of response of g_s to D. Stomatal sensitivity to D ($dg_s/dlnD$, Eqn 1) was strongly associated with g_{sref} in *Br. japonicus* ($R^2 = 0.91$, m = 0.56, P < 0.001, Fig. 3a). Much of the variation in g_{sref} , in turn was driven by growth at contrasting CO₂ concentrations, in which plants grown at higher CO₂ had lower g_{sref} . Although the relationship between $dg_s/dlnD$ and g_{sref} in *Bo. ischaemum* featured more variation, it was still statistically significant ($R^2 = 0.48$, m = 0.37, P < 0.001, Fig. 3b).

To determine whether stomatal responses to *D* were consistent with the regulation of constant leaf water potential and transpiration, we compared the magnitude of the slope of the relationship between stomatal sensitivity to *D* and $g_{\rm sref}$ from our gas exchange data with that generated from a hydraulic model (Oren *et al.* 1999). In *Br. japonicus*, there was no statistical difference (t = 1.33, d.f. = 16, P > 0.05) between the calculated theoretical $-dg_s/d\ln D$ versus $g_{\rm sref}$ slope of 0.62, and the empirical slope of 0.56 (a difference of 11%) (Fig. 3a). In contrast, the theoretical $-dg_s/d\ln D$ versus $g_{\rm sref}$ slope of 0.53 for *Bo. ischaemum* was significantly greater by 43% (t = 2.10, d.f. = 26, P < 0.05) than the empirical slope of 0.37 (Fig. 3b).

Based on a comparison of relative responses averaged across CO_2 treatments, the C_3 annual grass *Br. japonicus* was more responsive to leaf-to-air vapour pressure difference than the C_4 perennial *Bo. ischaemum*. Relative g_s

Figure 3. The relationship between stomatal sensitivity to *D* (the slope of the response of g_s to *D*; $-dg_s/d\ln D$) and the magnitude of g_s at 1 kPa (g_{sref}) for *Br. japonicus* (a) and *Bo. ischaemum* (b). Note the differences in scales between plots. Each data point represents a single individual.

Figure 4. A comparison of the mean $(\pm 1 \text{ SD})$ relative response of g_s (a), E (b), A (c) and C_i/C_a (d) to D in Br. japonicus and Bo. ischaemum pooled across CO₂ treatments.

declined non-linearly by approximately 65% with increasing *D* in the C₃ species, whereas relative g_s declined linearly by 25% in the C₄ species (Fig. 4a). The strong decrease in g_s for *Br. japonicus* caused relative leaf transpiration (*E*) to be approximately constant at a D > 1.5 kPa (Fig. 4b). In contrast, *E* increased linearly with increasing *D* in *Bo. ischaemum*. Despite these differences in stomatal sensitivity to *D*, the accompanying decline in photosynthesis was quite similar between the species (Fig. 4c). Relative *A* declined linearly by approximately 34% in *Br. japonicus* and by approximately 27% in *Bo. ischaemum* (Fig. 4c). In *Br. japonicus*, the C_i/C_a ratio declined by approximately 25% with increasing *D* whereas C_i/C_a was unaffected by *D* in *Bo. ischaemum* (Fig. 4d).

In all cases, stomatal conductance and photosynthesis responded linearly to increases in CO₂ from subambient to elevated levels (Fig. 5). In *Br. japonicus*, g_s declined significantly with increasing CO₂ at all levels of *D* (*P* < 0.0001). The response of g_s to CO₂ was strongest (i.e. the steepest slope) at the lowest *D* (1 kPa, Fig. 5a), as indicated by a significant CO₂ × *D* interaction (*P* < 0.001). In consequence, the slope of the g_s response to CO₂ was 3.6 times higher at 1 kPa than at 3.6 kPa. Stomatal conductance also declined with rising CO₂ (*P* < 0.001) in *Bo. ischaemum*, but the trajectory of the response was similar across levels of D (Fig. 5c).

Photosynthesis was stimulated by rising CO₂ at all levels of D (P < 0.0001) in Br. japonicus. The strongest response occurred at low D (ANOVAR, CO₂ × D interaction, P = 0.04, Fig. 5b), causing the slope of the response of A to CO₂ to be 1.3 times higher at 1 kPa than at 3.6 kPa. Although Aincreased with increasing CO₂ (P < 0.001) in *Bo. ischaemum*, the strength of the response was not altered by D(Fig. 5d).

DISCUSSION

Based on previous experiments with a variety of species (Morison & Gifford 1983; Bunce 1993, 1998; Heath 1998; Wullschleger *et al.* 2002), we predicted that rising CO₂ concentration would make stomata less sensitive to increasing leaf-to-air vapour pressure difference (*D*). We found support for this prediction in the C₃ annual *Br. japonicus* (Fig. 1a). The slope of the relationship between stomatal sensitivity to *D* and g_{sref} (Fig. 3a) was also indistinguishable from the predicted slope generated by the Oren *et al.* (1999) hydraulic model. Stomatal closure in *Br. japonicus* also appeared to allow the maintenance of relatively con-

Figure 5. The response of mean $(\pm 1 \text{ SE}) g_s$ (a, c), A (b, d) to growth CO₂ concentration (μ mol mol⁻¹) at contrasting D in Br. japonicus and Bo. ischaemum. Each data point represents the mean of three to five individuals. Responses to growth CO₂ concentration were fitted with linear least squares regression models.

stant leaf transpiration (*E*) with increasing *D* (Fig. 4b). Thus, decreased stomatal sensitivity to *D* at high CO_2 was consistent with stomatal regulation of constant water potential and transpiration in this C_3 annual grass.

We found no evidence that stomatal sensitivity to D was affected by growth CO₂ concentration in the C₄ perennial *Bo. ischaemum* (Fig. 2a). The slope of the $-dg_s/dlnD$ versus g_{sref} relationship for this species (Fig. 3b) was also significantly smaller than predicted from the hydraulic model. Stomatal responses to D in *Bo. ischaemum* may be governed by factors other than strict hydraulic maintenance of constant water potential, perhaps by non-hydraulic signalling via changes in abscisic acid (ABA) delivery to stomatal guard cells (Bunce 1998; Heath 1998). It is also possible that stomatal control of water loss in this species is poor; for example, leaf transpiration increased linearly with increasing *D* despite progressive stomatal closure (Fig. 4a & b). *Bothriochloa ischaemum* is dominant during the most drought-prone part of the growing season in this grassland (Polley *et al.* 2002). By maintaining open stomata under prolonged water limitation and therefore permitting continued CO₂ uptake, low stomatal sensitivity to *D* may represent an adaptation to drought (Ogle & Reynolds 2002). The lower than predicted empirical slope of 0.37 for *Bo. ischaemum* is also similar to the 0.40 slope reported for other drought-tolerant species, such as the desert shrubs *Ephedra nevadensis* and *Larrea tridentata* (Oren *et al.* 1999; Pataki *et al.* 2000; Ogle & Reynolds 2002).

The relative insensitivity of stomata to D in Bo. ischaemum could be a general feature of plants with low maximum g_s (e.g. Wullschleger *et al.* 2002), perhaps because of a comparatively greater effect of cuticular conductance on gas exchange. Although it is a small proportion of leaf water vapour flux, cuticular conductance is an unmeasured component of gs (Kerstiens 1996; Meyer & Genty 1998). As stomata close in response to rising D, cuticular conductance may remain constant and constitute an increasingly greater proportion of measured g_s . For species with low stomatal conductance, the insensitivity of cuticular conductance to D could dampen the overall response of g_s to D. In support of this hypothesis, Kerstiens (1997) has observed that an artificial increase in cuticular conductance was correlated with decreased stomatal sensitivity to D in three hypostomatous species. Nonetheless, it is not known whether cuticular permeability has any influence on the reduction in stomatal sensitivity to D at high CO₂.

In several grassland ecosystems, increased CO₂ reduces canopy transpiration and increases soil moisture content (Fredeen et al. 1997; Owensby et al. 1999; Grunzweig & Korner 2001; Morgan et al. 2001; Polley et al. 2002). These patterns raise the possibility that CO₂ could have indirectly affected stomatal functioning in our study species via a feedback on soil moisture availability. Although there were some CO₂ effects on soil water content in this experiment (see Polley et al. 2002), they were generally small and only appeared during the late summer drought. Therefore, stomatal responses to CO_2 and D were probably not confounded by CO₂-induced variation in soil water availability in the early season Br. japonicus. In contrast, increased soil moisture at high CO₂ during the late season drought could have affected stomatal sensitivity to D in Bo. ischaemum. The absence of differences in stomatal sensitivity across the gradient, however, suggests that neither CO₂ nor soil moisture affected stomatal sensitivity in the C₄ species. It is also possible, though, that increased soil moisture and CO₂ had opposite effects on stomatal sensitivity to D. These contrasting effects could have cancelled each other out and prevented the detection of a significant CO_2 effect for *Bo*. ischaemum in our experiment.

Photosynthetic rate declined in response to rising D in both species (Figs 1b & 2b), a response that has been observed in other studies (Forseth & Ehleringer 1983; Bunce 1993; Seneweera et al. 1998). The observation that C_i/C_a declined with increasing D in the Br. japonicus (Figs 1c & 4d), suggests that stomatal limitation was the primary cause of decreased photosynthesis at high D in this C_3 grass (Sage 1994). We also observed that the response of A to D was strongest at high C_a in Br. japonicus (Fig. 1b), a result that can be predicted from the relatively uniform decline in C_i/C_a with increasing D across growth CO₂ concentrations (Fig. 1c). For example, we note that C_i declined from 402 to 321 μ mol mol⁻¹ CO₂ at the highest treatment $C_{\rm a}$, but only declined from 167 to 143 μ mol mol⁻¹ CO₂ at the lowest treatment C_a (Fig. 1c). Assuming that the $A-C_i$ response of Br. japonicus does not change along the CO₂ gradient (as shown in Anderson et al. 2001), a greater change in absolute C_i with increasing D at high versus low C_a will also cause A to be more strongly affected by D at high versus low C_a .

Decreased photosynthesis at high D in Bo. ischaemum did not appear to be caused by stomatal limitation because constant C_i/C_a was maintained with increasing D (Figs 2c & 4d). It is possible that photosynthesis declined because increased transpirational water losses at high D (Fig. 4b) reduced leaf relative water content (RWC), which in turn inhibited metabolic processes. Such a response has been observed in both C₃ and C₄ species and may be the result of the inhibition of ATP synthesis by an increase in ion concentration (primarily Mg^{2+}) with decreasing RWC in the chloroplast (Lawlor 2002). The lack of response of C_i to decreasing photosynthesis may also be an artefact of non-uniform (patchy) stomatal closure (Mott 1995). The overestimation of C_i under these circumstances is particularly acute when stomatal conductance is low, as was the case for Bo. ischaemum (Buckley, Farquhar & Mott 1997; Meyer & Genty 1998). Nevertheless, we lack the necessary data in the present study to determine whether metabolic inhibition of photosynthesis or non-uniform stomatal closure was responsible for the decline in A and constant C_i/C_a with increasing D in the C₄ species.

Several studies suggest that exposure to high leaf-to-air vapour pressure difference may temper the relative response of stomatal conductance to atmospheric CO₂ 1998, concentration (Bunce 2000; Heath 1998; Wullschleger et al. 2002). We found support for this hypothesis in Br. japonicus. For example, the slope of the response of g_s to increasing growth CO₂ concentration was 3.6 times higher at the lowest versus highest D (Fig. 5a) in this C_3 species. In contrast, exposure to increasing D did not alter the slope of the response of g_s to increasing CO₂ in Bo. ischaemum (Fig. 5d). Interspecific variation in the response of stomatal conductance to CO_2 with changing D has implications for predicting seasonal ecosystem responses to CO₂ in this grassland because of the transition from early season C_3 (March–June) to late season C_4 (July-November) photosynthesis (Anderson et al. 2001; Mielnick et al. 2001). For example, if D increases in the future (MacCracken et al. 2001), CO2 enrichment will reduce absolute g_s less in the C₃ species than currently expected. After the seasonal transition to C₄ photosynthesis, however, the expected decrease in stomatal conductance at elevated CO_2 will probably be sustained at high D. Interspecific variation in the response of g_s to D may also be particularly important for the regulation of canopy gas exchange with rising CO₂ in this grassland since stomatal acclimation to CO2 does not occur in either species (Maherali et al. 2002).

One of our goals in utilizing an experimental gradient approach was to determine whether there is a non-linear or threshold response of g_s to changes in CO₂ concentration. Quantifying the trajectory of the response of plant processes to CO₂ has implications not only for understanding the nature of the responsible mechanisms, but also for predicting plant responses to the gradual rise in atmospheric CO₂ concentration (Anderson *et al.* 2001; Gill *et al.* 2002). For instance, Sage & Cowling (1999) suggest that plant stresses may magnify the negative effects of growth at low CO₂. A prediction from this hypothesis is that stresses such as high *D* could produce a non-linear stomatal response to rising CO₂. Previously, we found that g_s decreased linearly in response to rising CO₂ in *Br. japonicus* and *Bo. ischaemum* under optimal conditions (Anderson *et al.* 2001; Maherali *et al.* 2002). The results from the present study suggest that high *D* does not alter the linear nature of the stomatal response to CO₂.

We demonstrated that stomata were less responsive to Dwhen grown at increasing CO₂ concentration in the C₃ grass Br. japonicus. We also found support for hydraulic regulation as a mechanism responsible for decreasing stomatal sensitivity to D with increasing CO_2 concentration. Our findings for Br. japonicus corroborate stomatal responses to CO₂ and D observed in other species (Heath 1998; Bunce 2000; Wullschleger 2002). In contrast, stomatal sensitivity to D in the C_4 grass Bo. ischaemum was unaffected by CO_2 . The relative insensitivity of stomata to D in this species may be associated with drought tolerance, or be a general feature of species with low maximum g_s (e.g. Wullschleger *et al*. 2002). Our results highlight the importance of the leaf-toair vapour pressure difference as a factor that alters the effect of CO₂ on gas exchange. For the species with the most sensitive stomata, Br. japonicus, the effect of CO₂ on stomatal conductance and photosynthesis was strongest at low D. More generally, the influence of D on the strength of the gas exchange response to CO₂ could help account for variation in the effect size of CO₂ treatments among species (Curtis & Wang 1998) as well as seasonal variation in the field (Bunce 2000; Gunderson et al. 2002). Therefore, understanding how the interaction between CO_2 and D affects gas exchange among species is necessary to scale individual plant responses to CO2 to the level of the ecosystem.

ACKNOWLEDGMENTS

We thank R. P. Whitis for operating and maintaining the experimental CO₂ chambers and A. Gibson and H. W Polley for help at various points during the course of this research. We thank C. M. Caruso, R. L. McCulley, K. A. Mott, K. Ogle, H. W. Polley, C. D. Reid and two anonymous reviewers for constructive comments on the manuscript. This research was funded by the National Institute for Global Environmental Change through the US Department of Energy, the US Department of Agriculture and the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the DOE, NIGEC or USDA. This paper is a contribution to the Global Change and Terrestrial Ecosystems (GCTE) core project of the International Geosphere-Biosphere Programme (IGBP).

REFERENCES

- Anderson L.J., Maherali H., Johnson H.B., Polley H.W. & Jackson R.B. (2001) Gas exchange and photosynthetic acclimation over subambient to elevated CO₂ in a C₃-C₄ grassland. *Global Change Biology* 7, 693–707.
- Buckley T.N., Farquhar G.D. & Mott K.A. (1997) Qualitative effects of patchy stomatal conductance distribution features on gas exchange calculations. *Plant, Cell and Environment* 20, 867– 880.
- Bunce J.A. (1993) Effects of doubled atmospheric carbon dioxide concentration on the responses of assimilation and conductance to humidity. *Plant, Cell and Environment* 16, 189–197.
- Bunce J.A. (1998) Effects of environment during growth on the sensitivity of leaf conductance to changes in humidity. *Global Change Biology* 4, 269–274.
- Bunce J.A. (2000) Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field. *Global Change Biology* **6**, 371–382.
- Cowan I.R. (1977) Stomatal behaviour and the environment. Advances in Botanical Research 4, 117–228.
- Curtis P.S. & Wang X. (1998) A meta analysis of elevated CO₂ effects on woody plant mass, form, function and physiology. *Oecologia* **113**, 299–313.
- Drake B.G., Gonzalez-Meler M.A. & Long S.P. (1997) More efficient plants: a consequence of rising atmospheric CO₂? Annual Review of Plant Physiology and Plant Molecular Biology 48, 609–639.
- Ehleringer J.R., Cerling T.E. & Helliker B.R. (1997) C₄ photosynthesis, atmospheric CO₂, and climate. *Oecologia* **112**, 285– 299.
- Field C.B., Jackson R.B. & Mooney H.A. (1995) Stomatal responses to increased CO₂: implications from the plant to global scale. *Plant, Cell and Environment* 18, 1214–1225.
- Forseth I.N. & Ehleringer J.R. (1983) Ecophysiology of two solar tracking desert winter annuals. III. Gas exchange responses to light CO₂, and VPD in relation to long-term drought. *Oecologia* 57, 455–459.
- Fredeen A.L., Randerson J.T., Holbrook N.M. & Field C.B. (1997) Elevated atmospheric CO₂ increases water availability in a water-limited grassland ecosystem. *Journal of the American Water Resources Association* **33**, 1033–1039.
- Gill R.A., Polley H.W., Johnson H.B., Anderson L.J., Maherali H. & Jackson R.B. (2002) Nonlinear grassland responses to past and future atmospheric CO₂. *Nature* **417**, 279–282.
- Gregory J.M., Mitchell J.F.B. & Brady A.J. (1997) Summer drought in northern midlatitudes in a time-dependent CO₂ climate experiment. *Journal of Climate* **10**, 662–686.
- Grunzweig J.M. & Korner C. (2001) Growth, water and nitrogen relations in grassland model ecosystems of the semi-arid Negev of Israel exposed to elevated CO₂. *Oecologia* **128**, 251–262.
- Gunderson C.A., Sholtis J.D., Wullschleger S.D., Tissue D.T., Hanson P.J. & Norby R.J. (2002) Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (*Liquidambar styraciflua* L.) plantation during 3 years of CO₂ enrichment. *Plant, Cell and Environment* 25, 379– 393.
- Heath J. (1998) Stomata of trees growing in CO₂-enriched air show reduced sensitivity to vapor pressure deficit and drought. *Plant, Cell and Environment* **21**, 1077–1088.
- Henderson-Sellers A., McGuffie K. & Cross C. (1995) Sensitivity of global climate model simulations to increased stomatal resistance and CO₂ increases. *Journal of Climate* **8**, 1738–1756.
- Jackson R.B., Sala O.E., Field C.B. & Mooney H.A. (1994) CO₂ alters water use, carbon gain, and yield for the dominant species in a natural grassland. *Oecologia* **98**, 257–262.

- Jackson R.B., Sala O.E., Paruelo J.M. & Mooney H.A. (1998) Ecosystem water fluxes for two grasslands in elevated CO₂: a modeling analysis. *Oecologia* **113**, 537–546.
- Johnson H.B., Polley H.W. & Whitis R.P. (2000) Elongated chambers for field studies across atmospheric CO₂ gradients. *Functional Ecology* 14, 388–396.
- Kattenberg A.F., Giorgi H., Grassl G.A. et al. (1996) Global mean temperature changes for the IPCC (1992) emission scenarios. In *Climate Change 1995: The Science of Climate Change* (eds J.T. Houghton, L.G. Meira Filho, B.A. Callender, N. Harris, A. Kattenberg & K. Maskell), pp. 316–324. Cambridge University Press, New York, USA.
- Kerstiens G. (1996) Cuticular water permeability and its physiological significance. *Journal of Experimental Botany* **47**, 1813– 1832.
- Kerstiens G. (1997) In vivo manipulation of cuticular water permeance and its effect on stomatal response to air humidity. *New Phytologist* **137**, 473–480.
- Lawlor D.W. (2002) Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. *Annals of Botany* **89**, 971–885.
- MacCracken M., Barron E., Easterling D., Felzer B. & Karl T. (2001) Scenarios for climate variability and change. In *Climate Change Impacts on the United States* (ed. National Assessment Synthesis Team), pp. 13–71. Cambridge University Press, Cambridge, UK.
- Maherali H., Reid C.D., Polley H.W., Johnson H.B. & Jackson R.B. (2002) Stomatal acclimation over a subambient to elevated CO₂ gradient in a C₃/C₄ grassland. *Plant, Cell and Environment* **25**, 557–566.
- Medlyn B.E., Barton C.V.M., Broadmeadow M.S.J., *et al.* (2001) Stomatal conductance of forest species after long-term exposure to elevated CO₂ concentration: a synthesis. *New Phytologist* **149**, 247–264.
- Meyer S. & Genty B. (1998) Mapping intercellular CO_2 mole fraction (C_i) in *Rosa rubiginosa* leaves fed with abscisic acid by using chlorophyll fluorescence imaging: significance of C_i estimated from leaf gas exchange. *Plant Physology* **116**, 947–957.
- Mielnick P.C., Dugas W.A., Johnson H.B., Polley H.W. & Sanabria J. (2001) Net grassland carbon flux over a subambient to superambient CO₂ gradient. *Global Change Biology* 7, 747– 754.
- Morgan J.A., LeCain D.R., Mosier A.R. & Milchunas D.G. (2001) Elevated CO₂ enhances water relations and productivity and affects gas exchange in C₃ and C₄ grasses of the Colorado shortgrass steppe. *Global Change Biology* **7**, 451–466.
- Morison J.I.L. & Gifford R.M. (1983) Stomatal sensitivity to carbon dioxide and humidity. *Plant Physiology* 71, 789–796.
- Mott K.A. (1995) Effects of patchy stomatal closure on gas exchange measurements following abscisic acid treatment. *Plant, Cell and Environment* 18, 1291–1300.
- Mott K.A. & Parkhurst D.F. (1991) Stomatal responses to humidity in air and helox. *Plant, Cell and Environment* 14, 509–515.
- Ogle K. & Reynolds J.F. (2002) Desert dogma revisited: coupling of stomatal conductance and photosynthesis in the desert shrub, *Larrea tridentata. Plant, Cell and Environment* **25**, 909–921.
- Oren R., Sperry J.S., Katul G.G., Pataki D.E., Ewers B.E., Phillips N. & Schafer K.V.R. (1999) Survey and synthesis of intra- and

interspecific variation in stomatal sensitivity to vapour pressure deficit. *Plant, Cell and Environment* **22**, 1515–1526.

- Owensby C.E., Ham J.M., Knapp A.K. & Auen L.M. (1999) Biomass production and species composition change in a tall grass prairie ecosystem after long-term exposure to elevated atmospheric CO₂. *Global Change Biology* **5**, 497–506.
- Pataki D.E., Huxman T.E., Jordan D.N., Zitzer S.F., Coleman J.S., Smith S.D., Nowak R.S. & Seemann J.R. (2000) Water use of two Mojave Desert shrubs under elevated CO₂. *Global Change Biology* 6, 889–897.
- Petit J.R., Jouzel J., Reynaud D., *et al.* (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. *Nature* **399**, 429–436.
- Polley H.W., Johnson H.B. & Derner J.D. (2002) Soil- and plant water dynamics in a C_3/C_4 grassland exposed to a subambient to superambient CO₂ gradient. *Global Change Biology* **8**, 1118–1129.
- Polley H.W., Johnson H.B., Marino B.D. & Mayeux H.S. (1993) Increase in C₃ plant water use efficiency and biomass over glacial to present CO₂ concentrations. *Nature* **361**, 61–64.
- Potvin C., Lechowicz M.J. & Tardif S. (1990) The statistical analysis of ecophysiological response curves obtained from experiments involving repeated measures. *Ecology* **71**, 1389–1400.
- Sage R.F. (1994) Acclimation of photosynthesis to increasing atmospheric CO₂: the gas exchange perspective. *Photosynthesis Research* **39**, 351–368.
- Sage R.F. & Coleman J.R. (2001) Effects of low atmospheric CO_2 on plants: more than a thing of the past. *Trends in Plant Science* **6**, 18–24.
- Sage R.F. & Cowling S.A. (1999) Implications of stress in low CO₂ atmospheres of the past: are today's plants too conservative for a high CO₂ world? In *Carbon Dioxide and Environmental Stress* (eds Y. Luo & H.A. Mooney), pp. 289–308. Academic Press, San Diego, CA, USA.
- Sellers P.J., Bounoua L., Collatz G.J., *et al.* (1996) Comparison of radiative and physiological effects of doubled atmospheric CO₂ on climate. *Science* 271, 1402–1406.
- Seneweera S.P., Ghannoum O. & Conroy J. (1998) High vapour pressure deficit and low soil water availability enhance shoot growth responses of a C_4 grass (*Panicum coloratum cv. Bambatsi*) to CO₂ enrichment. *Australian Journal of Plant Physiology* **25**, 287–292.
- Smith S.D., Huxman T.E., Zitzer S.F., Charlet T.N., Housman D.C., Coleman J.S., Fenstermaker L.K., Seemann J.R. & Nowak R.S. (2000) Elevated CO₂ increases productivity and invasive species success in an arid ecosystem. *Nature* 408, 79–82.
- Sokal R.R. & Rohlf J. (1995) *Biometry*, 3rd edn. W.H. Freeman, New York, USA.
- Ward J.K., Tissue D.T., Thomas R.B. & Strain B.R. (1999) Comparative responses of model C₃ and C₄ plants to drought in low and elevated CO₂. *Global Change Biology* **5**, 857–867.
- Wullschleger S.D., Gunderson C.A., Hanson P.J., Wilson K.B. & Norby R.J. (2002) Sensitivity of stomatal and canopy conductance to elevated CO₂ concentration – interacting variables and perspectives of scale. *New Phytologist* **153**, 485–496.

Received 16 December 2002; received in revised form 13 March 2003; accepted for publication 25 March 2003