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For centuries, biologists have studied patterns of plant and animal
diversity at continental scales. Until recently, similar studies were
impossible for microorganisms, arguably the most diverse and
abundant group of organisms on Earth. Here, we present a conti-
nental-scale description of soil bacterial communities and the
environmental factors influencing their biodiversity. We collected
98 soil samples from across North and South America and used a
ribosomal DNA-fingerprinting method to compare bacterial com-
munity composition and diversity quantitatively across sites. Bac-
terial diversity was unrelated to site temperature, latitude, and
other variables that typically predict plant and animal diversity,
and community composition was largely independent of geo-
graphic distance. The diversity and richness of soil bacterial com-
munities differed by ecosystem type, and these differences could
largely be explained by soil pH (r2 � 0.70 and r2 � 0.58, respectively;
P < 0.0001 in both cases). Bacterial diversity was highest in neutral
soils and lower in acidic soils, with soils from the Peruvian Amazon
the most acidic and least diverse in our study. Our results suggest
that microbial biogeography is controlled primarily by edaphic
variables and differs fundamentally from the biogeography of
‘‘macro’’ organisms.

biodiversity � microbial ecology � soil bacteria � terminal-restriction
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A lthough microorganisms are perhaps the most diverse (1, 2)
and abundant (3) type of organism on Earth, the distribu-

tion of microbial diversity at continental scales is poorly under-
stood. Ecologists describing microbial biogeography typically
invoke Beijerinck (4) from a century ago: ‘‘Everything is every-
where, the environment selects.’’ However, few studies have
attempted to verify this statement or specify which environmen-
tal factors exert the strongest influences on microbial commu-
nities in nature (5, 6). With the advent of ribosomal DNA-
analysis methods that permit the characterization of bacterial
communities without culturing (7, 8), it is now possible to
examine the full extent of microbial diversity and describe the
biogeographical patterns exhibited by microorganisms at large
spatial scales.

Scientific understanding of microbial biogeography is partic-
ularly weak for soil bacteria, even though the diversity and
composition of soil bacterial communities is thought to have a
direct influence on a wide range of ecosystem processes (9, 10).
Much of the recent work in soil microbial ecology has focused on
cataloging the diversity of soil bacteria and documenting how soil
bacterial communities are affected by specific environmental
changes or disturbances. As a result, we know that soil bacterial
diversity is immense (11, 12) and that the composition and
diversity of soil bacterial communities can be influenced by a
wide range of biotic and abiotic factors (13). However, almost all
of this work has been site-specific, limiting our understanding of
the factors that structure soil bacterial communities across
biomes and regions.

We hypothesize that soil bacterial communities do exhibit
biogeographical patterns at the continental scale of inquiry and
that these patterns are predictable. Whereas previous studies
have examined the biogeographical distributions of soil fungal

communities (14) and individual strains of soil bacteria (15, 16),
to our knowledge, no previous study has examined how entire
soil bacterial communities are structured across large spatial
scales. We hypothesize that the biogeographical patterns exhib-
ited by soil bacteria will be fundamentally similar to the patterns
observed with plant and animal taxa and that those variables
which are frequently cited as being good predictors of animal and
plant diversity, particularly those variables related to energy,
water, or the water–energy balance (17–19), will also be good
predictors of bacterial diversity. To test these hypotheses, we
used a ribosomal DNA-fingerprinting method to compare the
composition and diversity of bacterial communities in 98 soils
collected from across North and South America.

Results and Discussion
Soil bacterial diversity, as estimated by phylotype richness and
diversity (Shannon index) (20), varied across ecosystem types
(Fig. 1). Of all soil and site variables examined, soil pH was, by
far, the best predictor of both soil bacterial diversity (r2 � 0.70,
P � 0.0001; Table 1 and Fig. 1 A) and richness (r2 � 0.58, P �
0.0001; Fig. 1B) with the lowest levels of diversity and richness
observed in acid soils (Fig. 1). Because soils with pH levels �8.5
are rare, it is not clear whether the relationship between bacterial
diversity is truly unimodal, as indicated in Fig. 1, or whether
diversity simply plateaus in soils with near-neutral pHs. Like-
wise, because our fingerprinting method underestimates total
bacterial diversity (see Methods), we cannot predict how the
absolute diversity of bacteria changes across the pH gradient.
When we compare paired sampling locations with similar veg-
etation and climate but very different soil pHs, we find evidence
for the strong correlation between bacterial diversity and soil pH
at the local scale. For example, two deciduous forest soils
collected in the Duke Forest, North Carolina (see Table 3, which
is published as supporting information on the PNAS web site),
showed that the soil with the higher pH (DF2, pH � 6.8) had an
estimated bacterial richness 60% higher than the more acidic soil
(DF3, pH � 5.1). Similarly for two tropical forest soils collected
�1 km apart in the Peruvian Amazon, the soil with the higher
pH (PE8, pH � 5.5) had an estimated bacterial richness 26%
higher than the more acidic soil (PE7, pH � 4.1).

Qualitatively, there was no clear relationship between soil
bacterial diversity and plant diversity at the continental scale.
Although plant diversity was not determined at each sampling
site, ecosystems with the highest levels of bacterial diversity
(semiarid ecosystems in the continental U.S.) have relatively
low levels of plant diversity (21). Likewise, soils from terra
firme sites in the Peruvian Amazon in our analysis had
relatively low levels of bacterial diversity (H� � 2.5–2.7), but
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these sites have some of the highest recorded levels of plant
diversity on Earth (22). In fact, we added the tropical sites at
Manu National Park, Peru (PE, Table 3) and Missiones,
Argentina (AR, Table 3) to test our initial relationship and to
contrast microbial diversity at two tropical sites with high plant
diversity but contrasting soil pH.

There was also no apparent latitudinal gradient in diversity
(Table 1 and Fig. 2), unlike diversity observations for plants and
animals (18). Consequently, the environmental factors fre-
quently cited as good predictors of plant and animal diversity at
continental scales, particularly mean annual temperature
(MAT) and potential evapotranspiration (PET) (17–19), had
little effect on measured soil bacterial diversity (Fig. 2). Sam-
pling resolution can have an important influence on the assess-

ment of diversity patterns (23, 24), and, in this study, soils were
collected from plots of �100 m2 that are smaller in size than
those commonly used to quantify large-scale patterns of plant
and animal diversity (17). However, because individual soil
bacteria are many orders-of-magnitude smaller than individual
plants or animals (25), the number of individuals per plot may
be directly comparable. It is also possible that the small size of
our plots causes us to overestimate the importance of local
parameters, such as soil pH, on bacterial community composi-
tion and underestimate the importance of parameters, such as
PET and MAT, which are more regional in scale. Nonetheless,
our results do suggest that the biogeographical patterns observed
in soil bacterial communities are fundamentally different from
those observed in well studied plant and animal communities

Fig. 1. The relationship between soil pH and bacterial phylotype diversity (A) and phylotype richness (B), defined as the number of unique phylotypes. Diversity
was estimated by using the Shannon index, a summary variable that incorporates the richness and evenness of phylotypes (20). Symbols correspond to general
ecosystem categories, and labels denote individual soils (see Table 3). Detailed information on the individual soils is provided in Table 3. Both quadratic
regressions (H� � �0.08pH2 � 1.12 pH � 0.5, r2 � 0.70 for A and Richness � �1.65pH2 � 23.2pH � 42.3, r2 � 0.58 for B) were statistically significant (P � 0.0001).
There was no significant correlation between the residuals of the two regressions shown here and any of the other soil and site variables listed in Table 1 (P �
0.25 in all cases).
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that have provided the foundation for biogeographical theory to
date.

Not only did we observe that soil pH was the best predictor of
bacterial richness and diversity, it was also the strongest predic-
tor of overall community composition (Fig. 3). We observed a

general clustering of soil bacterial communities within ecosys-
tems that corresponded to the observed pattern with pH across
systems (Fig. 3). For example, the bacterial communities found
in soils of arid and semiarid ecosystems, which generally have
near-neutral pHs, cluster together, as do bacterial communities
from temperate and tropical forest ecosystems, which generally
have acidic soils. Of all of the soil and site characteristics
examined, soil pH was the best predictor of soil microbial
community composition at the continental scale (Table 2), and
there was a strong correlation between the primary axis of Fig.
3, which describes 73% of the variation among soil communities,
and soil pH (r2 � 0.83 for Axis 1, P � 0.0001). There was some
correlation between soil pH and a number of other soil prop-
erties including soil moisture deficit (r � 0.68), soil organic C
content (r � �0.53), and soil C:N ratio (r � �0.51), but the
differences in bacterial community composition across ecosys-
tems could largely be explained by differences in soil pH alone
(rMantel � 0.75, r2 � 0.56, P � 0.001). These results are not likely
to be affected by variation in sampling times, because all soils
were collected near the height of the plant growing season at
each site and the intrasite variability in bacterial community
structure for soils collected at the same location 6 months apart
was less than the intersite variability in bacterial community
structure (see Fig. 4, which is published as supporting informa-
tion on the PNAS website).

Whereas vegetation type, carbon availability, nutrient avail-
ability, and soil moisture may influence microbial community

Table 1. Univariate models predicting phylotype diversity
[Shannon index (20), H�] as a function of various soil and
site characteristics

Variable Model type AIC value a b c r2

Latitude Quadratic 46.7 2.56 0.03 �0.01 0.16
MAT, °C Linear 61.5 3.25 �0.01 — 0.01
SMD Quadratic 20.6 3.29 0.01 0.01 0.33
Organic C, % Linear 45.2 3.37 �0.03 — 0.15
C:N ratio Linear 54.1 3.40 �0.01 — 0.05
Silt � clay, % Linear 61.1 3.25 �0.01 — 0.01
pH Quadratic �54.2 �0.49 1.12 �0.08 0.70
CMR Linear 51.7 3.33 �0.01 — 0.09
PET, mm�yr�1 Linear 61.5 3.27 �0.01 — 0.02

In each case, we fitted a linear (y � a � bx) and a quadratic (y � a � bx �
cx2) model; results are shown for the model with the lowest Akaike informa-
tion criteria (AIC) (46) value. Lower AIC values indicate stronger support for
the model, balancing model fit and parsimony. CMR, potential carbon min-
eralization rate (micrograms of C–CO2 per gram of soil�1�d�1); SMD, soil
moisture deficit (mm�yr�1).

Fig. 2. Relationships between phylotype diversity (Shannon index) and MAT, latitude, PET, and soil pH (as in Fig. 1A). MAT, PET, and latitude are typically good
predictors of animal and plant diversity at the continental scale (17, 18). In contrast, soil pH is the best predictor of bacterial diversity. The r2 values for the MAT,
latitude, PET, and pH regressions are 0.01, 0.16, 0.02, and 0.70, respectively (see Table 1 for complete regression statistics).
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composition at local scales (13), soil pH was a better predictor
of community structure at the continental scale (Table 2). The
strong correlation between soil pH and microbial community
structure could be a result of soil pH integrating a number of
other individual soil and site variables. However, we would also
expect soil pH to be an independent driver of soil bacterial
diversity, because the intracellular pH of most microorganisms
is usually within 1 pH unit of neutral (26). Moreover, any
significant deviation in environmental (extracellular) pH should
impose stress on single-celled organisms. The stress of residing
in suboptimal pH environments has been shown to have a
significant effect on the overall diversity and composition of
microbial communities in a range of terrestrial and aquatic
environments (27–29).

The degree of similarity between soil bacterial communities
was largely unrelated to geographic distance. For example,
forest soils from the Northeast U.S., Northwest U.S., boreal,

and tropical regions had bacterial communities that were
relatively similar in composition. Once the soil environmental
variables listed in Table 2 were taken into account, geographic
distance was found to be a poor predictor of the degree of
similarity in bacterial communities (rMantel � 0.13, r2 � 0.02,
P � 0.15), suggesting that soils with similar environmental
characteristics have similar bacterial communities regardless
of geographic distance. We estimated the relationship between
the number of unique taxa (phylotypes) and area sampled
using the distance-decay approach (14, 30, 31). Our estimated
z value, the rate of turnover of unique phylotypes across space,
is 0.03 (95% confidence interval: 0.02 to 0.04, P � 0.001). This
value is similar to the z values reported for other microbial
groups (14, 31) and much lower than z values commonly
reported for plant and animal taxa (32). As suggested in refs.
14 and 31, the low z values reported for microbial taxa may be
related, in part, to the discontinuous nature of the microbial

Fig. 3. Nonmetric multidimensional scaling plots of soil bacterial communities, showing the relative differences in community composition. Plots A and B are
identical except that A is overlayed with general ecosystem type and B is overlayed with pH category. The r2 values between ordination distance and distance
in the original space are 0.73 and 0.16 for axis 1 and axis 2, respectively. Soil pH explains 83% of the variability along the primary axis, axis 1 (see text). The addition
of more than two dimensions did not lead to a significant increase in the explanatory power of the ordination. The Sorensen distance metric (44) was used to
quantify the similarity between phylotype patterns.
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habitats surveyed and the relatively low taxonomic resolution
of the rDNA-based methodology used in this study. Never-
theless, our results provide strong evidence that environmental
factors, such as soil pH, are more important than geographic
distance in inf luencing the continental-scale spatial structur-
ing of microbial communities at higher taxonomic levels. In the
soil environment, the distribution and structure of bacterial
communities can largely be understood in terms of habitat
properties alone.

Here, we show that the structure of soil bacterial communities
is not random at the continental scale and that the diversity and
composition of soil bacterial communities at large spatial scales
can largely be predicted with a single variable, soil pH. These
results suggest that, to some degree, the large-scale biogeograph-
ical patterns observed in soil microorganisms are fundamentally
distinct from those observed in well studied plant and animal
taxa. Although the biogeography of microorganisms remains
poorly understood, and many questions remain unanswered, a
thorough integration of microbial ecology into the field of
biogeography is likely to provide a more comprehensive under-
standing of the factors controlling the Earth’s biodiversity and
biogeochemistry.

Methods
Soil Collection. A total of 98 soil samples that were distinct with
respect to soil and site characteristics were collected from a wide
array of ecosystem types in North and South America (see Table
3). Only soils unsaturated for the majority of the year were
examined. Soils were collected near the height of the plant
growing season at each location. To examine whether seasonal
variation was important, an additional set of soil samples was
collected 6 months after the initial collection at a subset of sites.
At each site, the upper 5 cm of mineral soil was collected from
5–10 locations within a given plot of �100 m2 and composited
into a single bulk sample. All soil samples were shipped to the
University of California, Santa Barbara, within a few days of
collection, where they were sieved to 4 mm, homogenized, and
archived at �80°C.

Site and Soil Description. For sites in the U.S., climate information
for each site was estimated from historical average data (1971–
2000) provided by the National Oceanic and Atmospheric
Administration. For sites outside the U.S., climate information
was provided by researchers working at the individual sites.
Average annual soil moisture deficit (in millimeters of H2O per
year�1) was estimated as the sum of the differences between
mean monthly PET and mean monthly precipitation. PET was
estimated by using Thornthwaite’s method with a correction for
latitude (33). Soil pH, organic C concentrations, and particle size

distributions were measured on each soil sample by using
standard methods (see Table 3). Potential C mineralization rates
were estimated by measuring the rates of CO2 production over
the course of a 50-d incubation at 20°C after adjusting all soils
to 35% of water-holding capacity.

Terminal-Restriction Fragment Length Polymorphism (T-RFLP) Analy-
ses. To compare bacterial diversity and community structure
across soils, we used a T-RFLP method. The method quantifies
sequence variability in small-subunit (16S) ribosomal DNA
extracted from soil, producing a DNA ‘‘fingerprint’’ for each
bacterial community based on the length and abundance of
unique phylotypes (restriction fragments) from each soil sample.
Although sequence analysis of clone libraries provides more
detailed phylogenetic information, the T-RFLP method is better
suited for analyzing a large number of samples and for quanti-
tatively detecting differences in the diversity and composition of
highly complex soil bacterial communities (34–37). One limita-
tion of the T-RFLP method is that it underestimates total
bacterial diversity because the method resolves only a limited
number of bands per gel (generally �100), and bacterial species
can share phylotypes (37). However, the method does provide a
robust index of bacterial diversity (35, 36, 38), and T-RFLP
results are generally consistent with the results from clone
libraries (39, 40).

For the T-RFLP procedure, DNA was extracted from 5–10 g
(dry weight equivalent) of each soil sample by using the Ultra-
Clean Mega Soil DNA kit (MoBio Laboratories, Carlsbad, CA).
DNA was further purified by using a Sepharose 4b column, as
described in Jackson et al. (41), with DNA yields quantified by
PicoGreen fluorometry (Molecular Probes). The HEX-labeled
primer Bac8f (5�-AGAGTTTGATCCTGGCTCAG-3�) and un-
labeled primer Univ1492r (5�-GGTTACCTTGTTACGACTT-
3�) (42) were used for amplification of bacterial 16S rDNA. Each
50-�l PCR mixture contained 1� HotStarTaq Master Mix
(Qiagen), 0.5 �M each primer, 50 �g of BSA, and 50 ng of DNA.
Each of the 35 PCR cycles consisted of 60 s at 94°C, 30 s at 50°C,
and 60 s at 72°C. Products were combined from three PCRs per
DNA sample and purified with a QiaQuick PCR purification kit
(Qiagen, Valencia, CA). After size verification by agarose-gel
electrophoresis, PCR products were digested in separate reac-
tions by using HhaI and RsaI restriction enzymes (New England
Biolabs). Digested DNA samples were separated by electro-
phoresis on an ABI Prism 3100 genetic analyzer using GENESCAN
analysis software (Applied Biosystems). The analysis and stan-
dardization of the T-RFLP profiles was conducted as described
in Dunbar et al. (37). Only those fragments in a particular
sequencing sample between 50- and 600-bp in length that had a
standardized fluorescence �4% of the total f luorescence for
that sample were included in the analyses.

Data Analysis. We used T-RFLP data (phylotype length and
square-root-transformed proportional abundance) (31) from
both the RsaI and HhaI enzymes for ordination by nonmetric
multidimensional scaling and the Mantel tests. These analyses
were conducted in PC-ORD (43) by using the Sorensen distance
metric (44), with Monte Carlo tests (1,000 randomized runs) to
determine significance. All other statistical analyses were per-
formed in SYSTAT (45). We used the Shannon index to estimate
phylotype diversity, as recommended by Hill et al. (20). The
phylotype–area relationship was estimated by using the distance-
decay approach (14, 30, 31). Correlations between soil and site
variables were examined by using linear regressions with a
Pearson correction for multiple comparisons. We conducted
partial Mantel tests using the method described in Horner-
Devine et al. (30) to examine the correlation between geographic
distance and the degree of similarity in bacterial community
composition when soil characteristics are held constant.

Table 2. Pearson correlations between the ordination score of
the first axis of the nonmetric dimensional scaling ordination
(which explains 73% of the variance in the original data) and
key soil and site characteristics

Variable r r2

Vegetation type �0.62 0.38
MAT 0.09 0.01
SMD 0.73 0.54
Organic C, % �0.51 0.26
C:N ratio �0.50 0.25
Silt � clay, % �0.04 0.01
pH 0.91 0.83
CMR �0.44 0.20

Vegetation type is a binary variable (forest�nonforest). SMD, soil moisture
deficit; CMR, potential C mineralization rate.
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