Belowground ecology: roots, microbes, and soils
Main content start
The longest-running research project in our group is to understand how plant, soil, and microbial attributes influence plant productivity and water and nutrient cycling. Our work has included the first global analysis of plant rooting distributions (e.g., Jackson et al. 1996 Oecologia and subsequent papers) and the first continental-scale measurements of microbial diversity in soils, and the factors predicting them (e.g., Fierer and Jackson 2006 PNAS).
Publications
- “Greater Humification of Belowground Than Aboveground Biomass Carbon into Particulate Soil Organic Matter in No-till Corn and Soybean Crops”, Soil Biology Biochemistry, 85 (2015). https://doi.org/doi:10.1016/j.soilbio.2015.02.014.
- “Redefining Fine Roots Improves Understanding of below-Ground Contributions to Terrestrial Biosphere Processes”, New Phytologist, 207 (2015). https://doi.org/doi:10.1111/nph.13363.
- “Soil Carbon Responses to past and Future CO2 in Three Texas Prairie Soils”, Soil Biology Biochemistry, 83 (2015). https://doi.org/doi:10.1016/j.soilbio.2015.01.012.
- “Contrasting Hydraulic Architecture and Function in Deep and Shallow Roots of Tree Species from a Semi-Arid Habitat”, Annals of Botany, 113 (2014). https://doi.org/doi:10.1093/aob/mct294.
- “Fungal Community Responses to past and Future Atmospheric CO2 Differ by Soil Type”, Applied and Environmental Microbiology, 80 (2014). https://doi.org/doi:10.1128/AEM.02083-14.
- “Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities Than Elevated Atmospheric CO2”, Applied and Environmental Microbiology, 80 (2014). https://doi.org/doi:10.1128/AEM.04034-13.
- “Priming of Soil Organic Carbon Decomposition Induced by Corn Compared to Soybean Crops”, Soil Biology Biochemistry, 75 (2014). https://doi.org/doi:10.1016/j.soilbio.2014.04.005.
- “Hydraulic Limits on Maximum Plant Transpiration and the Emergence of the Safety-Efficiency Trade-off”, New Phytologist, 198 (2013). https://doi.org/doi:10.1111/nph.12126.
- “The Structure, Distribution, and Biomass of the world’s Forests”, Annual Review of Ecology, Evolution, and Systematics, 44 (2013). https://doi.org/doi:10.1146/annurev-ecolsys-110512-135914.
- “A Global Analysis of Groundwater Recharge for Vegetation, Climate, and Soils”, Vadose Zone Journal, 11 (2012). https://doi.org/doi:10.2136/vzj2011.0021RA.
- “Analytical Models of Soil and Litter Decomposition: Solutions for Mass Loss and Time-Dependent Decay Rates”, Soil Biology and Biochemistry, 50 (2012). https://doi.org/doi:10.1016/j.soilbio.2012.02.029.
- “Common Bacterial Responses in Six Ecosystems Exposed to 10 Years of Elevated Atmospheric Carbon Dioxide”, Environmental Microbiology, 14 (2012). https://doi.org/doi:10.1111/j.1462-2920.2011.02695.x.
- “Revised Calibration of the MBT-CBT Paleotemperature Proxy Based on Branched Tetraether Membrane Lipids in Surface Soils”, Geochimica et Cosmochimica Acta, 96 (2012). https://doi.org/doi:10.1016/j.gca.2012.08.011.
- “Shifts in Soil Organic Carbon for Plantation and Pasture Establishment in Native Forests and Grasslands of South America”, Global Change Biology, 18 (2012). https://doi.org/doi:10.1111/j.1365-2486.2012.02761.x.
- “The Effect of Hydraulic Lift on Organic Matter Decomposition, Soil Nitrogen Cycling, and Nitrogen Acquisition by a Grass Species”, Oecologia, 168 (2012). https://doi.org/doi:10.1007/s00442-011-2065-2.
- “Atmospheric CO2 and Soil Extracellular Enzyme Activity: A Meta-Analysis and CO2 Gradient Experiment”, Ecosphere, 2 (2011). https://doi.org/doi:10.1890/ES11-00117.1.
- “Increases in the Flux of Carbon Belowground Stimulate Nitrogen Uptake and Sustain the Long-Term Enhancement of Forest Productivity under Elevated CO2”, Ecology Letters, 14 (2011). https://doi.org/doi:10.1111/j.1461-0248.2011.01593.x.
- “Responses of Soil Cellulolytic Fungal Communities to Elevated Atmospheric CO2 Are Complex and Variable across Five Ecosystems”, Environmental Microbiology, 13 (2011). https://doi.org/doi:10.1111/j.1462-2920.2011.02548.x.
- “Sources of Increased N Uptake in Forest Trees Growing under Elevated CO2: Results of a Large-Scale 15N Study”, Global Change Biology, 17 (2011). https://doi.org/doi:10.1111/j.1365-2486.2011.02465.x.
- “Hydraulic Lift and Tolerance to Salinity of Semiarid Species: Consequences for Species Interactions”, Oecologia, 162 (2010). https://doi.org/doi:10.1007/s00442-009-1447-1.
- “Root Responses Along a Subambient to Elevated CO2 Gradient in a C3-C4 Grassland”, Global Change Biology, 16 (2010). https://doi.org/doi:10.1111/j.1365-2486.2009.01975.x.
- “Water Uptake and Hydraulic Redistribution across Large Woody Root Systems to 20 M Depth”, Plant Cell Environment, 33 (2010). https://doi.org/dx.doi.org/10.1111/j.1365-3040.2010.02212.x.
- “A Global Meta-Analysis of Soil Exchangeable Cations, PH, Carbon, and Nitrogen With Afforestation”, Ecological Applications, 19 (2009). https://doi.org/doi:10.1890/08-1730.1.
- “Assessing Interactive Responses in Litter Decomposition in Mixed Species Litter”, Plant and Soil, 314 (2009). https://doi.org/doi:10.1007/s11104-008-9726-x.
- “Increased Belowground Biomass and Soil CO2 Fluxes After a Decade of Carbon Dioxide Enrichment in a Warm-Temperate Forest”, Ecology, 90 (2009). https://doi.org/doi:10.1890/08-1609.1.
- “Reciprocal Influence Between Crops and Shallow Ground Water in Sandy Landscapes of the Inland Pampas”, Field Crops Research, 113 (2009). https://doi.org/doi:10.1016/j.fcr.2009.04.016.
- “Sheep Grazing Decreases Organic Carbon and Nitrogen Pools in the Patagonian Steppe: Combination of Direct and Indirect Effects”, Ecosystems, 12 (2009). https://doi.org/doi:10.1007/s10021-009-9252-6.
- “Fine Root Dynamics in a Loblolly Pine Forest Are Influenced by Free-Air-CO2-Enrichment: A Six-Year-Minirhizotron Study”, Global Change Biology, 14 (2008). https://doi.org/doi:10.1111/j.1365-2486.2007.01523.x.
- “Fine-Root Respiration in a Loblolly Pine (Pinus Taeda L.) Forest Exposed to Elevated CO2 and N Fertilization”, Plant, Cell and Environment, 31 (2008). https://doi.org/doi:10.1111/j.1365-3040.2008.01869.x.
- “Nonlinear Root-Derived Carbon Sequestration across a Gradient of Nitrogen and Phosphorous Deposition in Experimental Mesocosms”, Global Change Biology, 14 (2008). https://doi.org/doi:10.1111/j.1365-2486.2008.01564.x.
- “Regional Patterns and Controls of Ecosystem Salinization With Grassland Afforestation Along a Rainfall Gradient”, Global Biogeochemical Cycles, 22 (2008). https://doi.org/doi:10.1029/2007GB003000.
- “Soil Carbon Sequestration in a Pine Forest After 9 Years of Atmospheric CO2 Enrichment”, Global Change Biology, 14 (2008). https://doi.org/doi:10.1111/j.1365-2486.2008.01701.x.
- “The Global Stoichiometry of Litter Nitrogen Mineralization”, Science, 321 (2008). https://doi.org/doi:10.1126/science.1159792.
- “Aquaporin-Mediated Changes in Hydraulic Conductivity of Deep Tree Roots Accessed via Caves”, Plant, Cell and Environment, 30 (2007). https://doi.org/doi:10.1111/j.1365-3040.2007.01714.x.
- “Effects of Elevated Atmospheric CO2 on Amino Acid and NH4+-N Cycling in a Temperate Pine Ecosystem”, Global Change Biology, 13 (2007). https://doi.org/doi:10.1111/j.1365-2486.2007.01411.x.
- “Groundwater and Soil Chemical Changes under Phreatophytic Tree Plantations”, Journal of Geophysical Research Biogeosciences, 112 (2007). https://doi.org/doi:10.1029/2006JG000246.
- “Increases in Nitrogen Uptake Rather Than Nitrogen-Use Efficiency Support Higher Rates of Temperate Forest Productivity under Elevated CO2”, Proceedings of the National Academy of Sciences USA, 104 (2007). https://doi.org/doi:10.1073/pnas.0706518104.
- “Metagenomic and Small-Subunit RNA Analyses Reveal the High Genetic Diversity of Bacteria, Archaea, Fungi, and Viruses in Soil”, Applied and Environmental Microbiology, 73 (2007). https://doi.org/doi:10.1128/AEM.00358-07.
- “New Directions in Microbial Ecology”, Ecology, 88 (2007). https://doi.org/doi:10.1890/06-1882.
- “Toward an Ecological Classification of Soil Bacteria”, Ecology, 88 (2007). https://doi.org/doi:10.1890/05-1839.
- “Inhibition of Nitrification Alters Carbon Turnover in the Patagonian Steppe”, Ecosystems, 9 (2006). https://doi.org/doi:10.1007/s10021-005-0039-0.
- “Potential Nitrogen Constraints on Soil Carbon Sequestration under Low and Elevated Atmospheric CO2”, Ecology, 87 (2006). https://doi.org/doi:10.1890/04-1696.
- “Predicting the Temperature Dependence of Microbial Respiration in Soil: A Continental-Scale Analysis”, Global Biogeochemical Cycles, 20 (2006). https://doi.org/http://dx.doi.org/10.1029/2005GB002644.
- “The Diversity and Biogeography of Soil Bacterial Communities”, Proceedings of the National Academy of Sciences USA, 103 (2006). https://doi.org/doi:10.1073/pnas.0507535103.
- “Assessment of Soil Microbial Community Structure by Use of Taxon-Specific Quantitative PCR Assays”, Applied and Environmental Microbiology, 71 (2005). https://doi.org/doi:10.1128/AEM.71.7.4117-4120.2005.
- “Ecohydrological Control of Deep Drainage in Semiarid Regions”, Ecology, 86 (2005). https://doi.org/doi:10.1890/03-0568.
- “Mapping the Global Distribution of Deep Roots in Relation to Climate and Soil Characteristics”, Geoderma, 126 (2005). https://doi.org/doi:10.1016/j.geoderma.2004.11.018.
- “Trading Water for Carbon With Biological Carbon Sequestration”, Science, 310 (2005). https://doi.org/doi:10.1126/science.1119282.
- “Carbon Cycling in Soil”, Frontiers in Ecology and the Environment, 2 (2004). https://doi.org/doi:10.1890/1540-9295(2004)002%5B0522:CCIS%5D2.0.CO;2.
- “Groundwater Use and Salinization With Grassland Afforestation”, Global Change Biology, 10 (2004). https://doi.org/doi:10.1111/j.1365-2486.2004.00806.x.
- “Nutrient Uptake As a Contributing Explanation for Deep Rooting in Arid and Semi-Arid Ecosystems”, Oecologia, 141 (2004). https://doi.org/doi:10.1007/s00442-004-1687-z.
- “The Uplift of Soil Nutrients by Plants: Biogeochemical Consequences across Scales”, Ecology, 85 (2004). https://doi.org/doi:10.1890/03-0245.
- “Variation in Xylem Structure and Function in Stems and Roots of Trees to 20 M Depth”, New Phytologist, 163 (2004). https://doi.org/doi:10.1111/j.1469-8137.2004.01127.x.
- “Defining a plant’s Belowground Zone of Influence”, Ecology, 84 (2003). https://doi.org/doi:10.1890/02-0287.
- “Patterns and Mechanisms of Soil Acidification in the Conversion of Grasslands to Forests”, Biogeochemistry, 64 (2003). https://doi.org/doi:10.1023/A:1024985629259.
- “Ecosystem Carbon Loss With Woody Plant Invasion of Grasslands”, Nature, 418 (2002). https://doi.org/doi.org/10.1038/nature00910.
- “Linking Molecular Insight and Ecological Research”, Trends in Ecology and Evolution, 17 (2002). https://doi.org/doi:10.1016/S0169-5347(02)02571-5.
- “Nonlinear Grassland Responses to past and Future Atmospheric CO2”, Nature, 417 (2002). https://doi.org/doi:10.1038/417279a.
- “Root Production and Demography in a California Annual Grassland under Elevated Atmospheric Carbon Dioxide”, Global Change Biology, 8 (2002). https://doi.org/doi:10.1046/j.1365-2486.2002.00514.x.
- “Rooting Depths, Lateral Root Spreads, and Belowground Aboveground Allometries of Plants in Water Limited Ecosystems”, Journal of Ecology, 90 (2002). https://doi.org/doi:10.1046/j.1365-2745.2002.00682.x.
- “The Global Biogeography of Roots”, Ecological Monographs, 72 (2002). https://doi.org/doi:10.1890/0012-9615(2002)072%5B0311:TGBOR%5D2.0.CO;2.
- “Below-Ground Processes in Gap Models for Simulating Forest Response to Global Change”, Climatic Change, 51 (2001). https://doi.org/doi:10.1023/A:1012570821241.
- “Modelling Root Water Uptake in Hydrological and Climate Models”, Bulletin of the American Meteorological Society, 82 (2001). https://doi.org/doi:10.1175/1520-0477(2001)082%3C2797%3AMRWUIH%3E2.3.CO%3B2.
- “Plant Physiological Ecology: Linking the Organism to Scales above and below”, New Phytologist, 149 (2001). https://doi.org/doi:10.1046/j.1469-8137.2001.00023-2.x.
- “The Distribution of Soil Nutrients With Depth: Global Patterns and the Imprint of Plants”, Biogeochemistry, 53 (2001). https://doi.org/doi:10.1023/A:1010760720215.
- “A Universal Molecular Method for Identifying Underground Plant Parts to Species”, Molecular Ecology, 9 (2000). https://doi.org/doi:10.1046/j.1365-294x.2000.01034.x.
- “Belowground Consequences of Vegetation Change and Their Treatment in Models”, Ecological Applications, 10 (2000). https://doi.org/doi:10.1890/1051-0761(2000)010%5B0470:BCOVCA%5D2.0.CO;2.
- “Belowground Processes and Global Change. Invited Feature”, Ecological Applications, 10 (2000). https://doi.org/doi:10.1890/1051-0761(2000)010%5B0397:BPAGC%5D2.0.CO;2.
- “Global Patterns of Root Turnover for Terrestrial Ecosystems”, New Phytologist, 147 (2000). https://doi.org/doi:10.1046/j.1469-8137.2000.00681.x.
- “Nutrient Concentrations in Fine Roots”, Ecology, 81 (2000). https://doi.org/doi:10.1890/0012-9658(2000)081%5B0275:NCIFR%5D2.0.CO;2.
- “Plant Competition in Spatially Heterogeneous Environments”, Ecological Consequences of Habitat Heterogeneity, British Ecological Society Symposium Series. https://doi.org/Google books.
- “Root Dynamics and Global Change: Seeking an Ecosystem Perspective”, New Phytologist, 147 (2000). https://doi.org/doi:10.1046/j.1469-8137.2000.00676.x.
- “Root Water Uptake and Transport: Using Physiological Processes in Global Predictions”, Trends in Plant Science, 5 (2000). https://doi.org/doi:10.1016/S1360-1385(00)01766-0.
- “The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation”, Ecological Applications, 10 (2000). https://doi.org/doi:10.1890/1051-0761(2000)010%5B0423:TVDOSO%5D2.0.CO;2.
- “Ecosystem Rooting Depth Determined With Caves and DNA”, Proceedings of the National Academy of Sciences, U.S.A.
- “The Importance of Root Distributions for Hydrology, Biogeochemistry, and Ecosystem Functioning”, Integrating hydrology, ecosystem dynamics, and biogeochemistry in complex landscapes, Dahlem Conference.
- “The Structure and Function of Root Systems”, Handbook of Functional Plant Ecology, (FI Pugnaire, F Valladares, eds.). https://doi.org/Google books.
- “A Global Budget for Fine Root Biomass, Surface Area, and Nutrient Contents”, Proceedings of the National Academy of Sciences, U.S.A, 94 (1997).
- “On the Fate of Carbon in Grasslands under Carbon Dioxide Enrichment”, Nature, 388 (1997).
- “Plant Competition Underground”, Annual Review of Ecology and Systematics, 28 (1997). https://doi.org/doi:10.1146/annurev.ecolsys.28.1.545.
- “A Global Analysis of Root Distributions for Terrestrial Biomes”, Oecologia, 108 (1996). https://doi.org/doi:10.1007/BF00333714.
- “Elevated CO2 Increases Belowground Respiration in California Grasslands”, Oecologia, 108 (1996). https://doi.org/doi:10.1007/BF00333224.
- “Field CO2-Enrichment Experiments Lack Statistical Power to Detect Changes in Soil Carbon”, Plant and Soil, 187 (1996).
- “Integrating Resource Heterogeneity and Plant Plasticity: Modeling Nitrate and Phosphate Uptake in a Patchy Soil Environment”, Journal of Ecology, 84 (1996).
- “Maximum Rooting Depth of Vegetation Types at the Global Scale”, Oecologia, 108 (1996).
- “Nitrate and Ammonium Uptake for Single- and Mixed-Species Communities Grown at Elevated CO2”, Oecologia, 105 (1996). https://doi.org/doi:10.1007/BF00328793.
- “Rooting Depth, Water Availability, and Vegetation Cover Along an Aridity Gradient in Patagonia”, Oecologia, 108 (1996). https://doi.org/doi:10.1007/BF00333727.
- “Local Regulation of Mycorrhizal Arbuscule Frequency in Enriched Soil Microsites”, Canadian Journal of Botany, 72 (1994).
- “Geostatistical Patterns of Soil Heterogeneity Around Individual Perennial Plants”, Journal of Ecology, 81 (1993).
- “Shading and the Capture of Localized Soil Nutrients: Nutrient Contents, Carbohydrates, and Root Uptake Kinetics of a Perennial Tussock Grass”, Oecologia, 91 (1992). https://doi.org/doi:10.1007/BF00650316.
- “Exploitation of Phosphate from Fertile Soil Microsites by Three Great Basin Perennials When in Competition”, Functional Ecology, 5 (1991).
- “Kinetic Responses of Pseudoroegneria Roots to Localized Soil Enrichment”, Plant and Soil, 138 (1991).
- “Rapid Physiological Adjustment of Roots to Localized Soil Enrichment”, Nature, 344 (1990).
- “The Timing and Degree of Root Proliferation in Fertile-Soil Microsites for Three Cold-Desert Perennials”, Oecologia, 81 (1989). https://doi.org/link.springer.com/article/10.1007%2FBF00379798.